Chaining methods and their application to genomic data

DaSciM seminar

Ekaterina Antonenko

Supervisor: Jesse Read

November 26, 2021

Laboratoire d'informatique, École Polytechnique DigitalentLab, MIA, Moteurs d'Intelligence Artificielle Introduction: Multi-output prediction

Chaining methods

Imputation of missing values in genomic data

Introduction: Multi-output prediction

Machine learning

Raccoon? YES

Raccoon? $\ensuremath{\text{NO}}$

Machine learning

Raccoon? YES

Raccoon? NO

We want to find the **best** model *f*: $X \xrightarrow{f} y$

 $f: f(X) = \hat{y},$ such that the loss function $L(\hat{y}, y)$ is minimal.

Examples of loss functions:

- · Regression: MSE, MAE
- Classification: 0/1 loss

Raccoon? YES

Raccoon? YES Wolf? NO Beaver? NO Has stripes? YES Has fur? YES

Raccoon? YES	$f_1(X) = y$
Wolf? NO	$f_2(X) = y$
Beaver? NO	$f_3(\mathbf{X}) = \mathbf{y}$
Has stripes? YES	$f_4(\mathbf{X}) = \mathbf{y}$
Has fur? YES	$f_5(\mathbf{X}) = \mathbf{y}$

Raccoon? YES Wolf? NO Beaver? NO f(X) = yHas stripes? YES Has fur? YES

$$\mathbf{y} = (y_1, y_2, y_3, y_4, y_5)$$

Raccoon? YES Wolf? NO Beaver? NO f(X) = yHas stripes? YES Has fur? YES

 $y = (y_1, y_2, y_3, y_4, y_5)$

Idea: to model these labels together in order to get better prediction performance

Chaining methods

Definition of a multi-output problem

Given:

Dataset $\mathcal{D} = \{(\mathbf{x}^i, \mathbf{y}^i)\}_{i=1}^N$ of N samples:

- features $\mathbf{x}^i = [\mathbf{x}_1^i, ..., \mathbf{x}_M^i]$
- outputs $\mathbf{y}^i = [y_1^i, ..., y_L^i]$

Goal:

Model which outputs predictions $\hat{y}^i = [\hat{y}_1^i, ..., \hat{y}_L^i]$ having \mathcal{D} observed.

	Raccoon?	WOLLS.	Beauer.	Hasstines?	Hastur
x1	1	0	0	1	1
x2	1	0	0	0	1
x ₃	0	0	1	0	1
×4	0	1	0	0	1
×5	0	0	0	1	0
x ₆	?	?	?	?	?

• Independent models (= binary relevance for classification):

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), ..., h_L(\mathbf{x})]$$

• Fully-cascaded chain:

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), h_2(\mathbf{x}, \hat{y}_1), ..., h_L(\mathbf{x}, \hat{y}_1, ..., \hat{y}_{L-1})]$$

*h*₁, *h*₂, ..., *h*_L = Base Estimators (i.e. any single-output models)

х

 y_3

 y_4

• Independent models (= *binary relevance* for classification):

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), ..., h_L(\mathbf{x})]$$

• Fully-cascaded chain:

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), h_2(\mathbf{x}, \hat{y}_1), ..., h_L(\mathbf{x}, \hat{y}_1, ..., \hat{y}_{L-1})]$$

h₁, h₂, ..., h_L = Base Estimators (i.e. any single-output models)

х

 y_3

 y_4

• Independent models (= binary relevance for classification):

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), ..., h_L(\mathbf{x})]$$

• Fully-cascaded chain:

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), h_2(\mathbf{x}, \hat{y}_1), ..., h_L(\mathbf{x}, \hat{y}_1, ..., \hat{y}_{L-1})]$$

h₁, h₂, ..., h_L = Base Estimators (i.e. any single-output models)

х

 y_3

 y_4

• Independent models (= binary relevance for classification):

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), ..., h_L(\mathbf{x})]$$

• Fully-cascaded chain:

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), h_2(\mathbf{x}, \hat{y}_1), ..., h_L(\mathbf{x}, \hat{y}_1, ..., \hat{y}_{L-1})]$$

h₁, h₂, ..., h_L = Base Estimators (i.e. any single-output models)

х

 y_3

 y_4

• Independent models (= binary relevance for classification):

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), ..., h_L(\mathbf{x})]$$

• Fully-cascaded chain:

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), h_2(\mathbf{x}, \hat{y}_1), ..., h_L(\mathbf{x}, \hat{y}_1, ..., \hat{y}_{L-1})]$$

h₁, h₂, ..., h_L = Base Estimators (i.e. any single-output models)

х

 y_3

 y_4

• Independent models (= binary relevance for classification):

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), ..., h_L(\mathbf{x})]$$

• Fully-cascaded chain:

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), h_2(\mathbf{x}, \hat{y}_1), ..., h_L(\mathbf{x}, \hat{y}_1, ..., \hat{y}_{L-1})]$$

h₁, h₂, ..., h_L = Base Estimators (i.e. any single-output models)

х

 y_3

 y_4

• Independent models (= binary relevance for classification):

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), ..., h_L(\mathbf{x})]$$

• Fully-cascaded chain:

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), h_2(\mathbf{x}, \hat{y}_1), ..., h_L(\mathbf{x}, \hat{y}_1, ..., \hat{y}_{L-1})]$$

h₁, h₂, ..., h_L = Base Estimators (i.e. any single-output models)

х

 y_3

 y_4

Classification

Classifier Chains have proved to be flexible and effective and have achieved state-of-the-art empirical performance

• Classifier Chains: A Review and Perspectives, Read et al., 2021

Regression

Regressor Chains show relatively few advantages compared to individual regression models. State-of-the-art methods:

- Multi-output Decision Trees (DT)
- Multi-output Random Forests (RF)
- Independent Regressors (IR)

Regressor chains: why don't they work?

- 1. Inadequate choice of the loss function to optimize
 - Most models optimize MSE = $\frac{1}{N} \sum_{j=1}^{N} (\mathbf{y}_j \hat{\mathbf{y}}_j)^2$.
 - \cdot Example: multi-modal distribution \implies standard models may be inappropriate.

• Optimizing MSE does not help to exploit the dependencies between the targets.

Regressor chains: why don't they work?

1. Inadequate choice of the loss function to optimize

- Most models optimize $MSE = \frac{1}{N} \sum_{j=1}^{N} (\mathbf{y}_j \hat{\mathbf{y}}_j)^2$.
- \cdot Example: multi-modal distribution \implies standard models may be inappropriate.

• Optimizing MSE does not help to exploit the dependencies between the targets.

2. Insufficient depth of the model

- \cdot Only one round of prediction
- Fixed cascaded order

Our improvements for Regressor Chains

- 1. Multi-Modal Ensembles of Regressor Chains (mmERC) =
 - = Ensembles of Regressor Chains +
 - + Mechanism 1 (BaseEstimator level) +
 - + Mechanism 2 (Ensemble level)

2. Layered Regressor Chains (LRC)

Multi-Modal Ensembles of Regressor Chains (mmERC)

Uniform Cost Function (UCF) is an analogue of 0/1 loss for regression.

$$\mathsf{UCF}(\delta) = \frac{1}{N} \sum_{i=1}^{N} \begin{cases} 0 \text{ if } \|\mathbf{y}^{i} - \hat{\mathbf{y}}^{i}\|_{2} < \frac{\delta}{2}, \\ 1 \text{ otherwise.} \end{cases}$$

Goal = problem: optimize UCF.

Multi-Modal Ensembles of Regressor Chains (mmERC)

Uniform Cost Function (UCF) is an analogue of 0/1 loss for regression.

$$\mathsf{UCF}(\delta) = \frac{1}{N} \sum_{i=1}^{N} \begin{cases} 0 \text{ if } \|\mathbf{y}^{i} - \hat{\mathbf{y}}^{i}\|_{2} < \frac{\delta}{2}, \\ 1 \text{ otherwise.} \end{cases}$$

Goal = problem: optimize UCF.

	ERC	mmERC
BaseEstimator level	single round	train on all dataset,
	of training	choose portion of data
		giving best predictions,
		retrain on this part
Ensemble level	mean for all	choose the biggest
	predictions	cluster of predictions,
		take mean for
		this cluster only

mmERC: results on a synthetic dataset

Regressor	А	В	С	D	Е	Average	AvgRank
DT	0.71	0.50	0.50	0.70	0.73	0.63 ± 0.01	7.9
RF	0.84	0.47	0.45	0.78	0.84	0.67 ± 0.04	10.2
IR (dt)	0.79	0.50	0.52	0.74	0.78	0.66 ± 0.02	11.1
IR (rf)	0.86	0.47	0.47	0.79	0.87	0.69 ± 0.04	11.0
IR (svr)	0.72	0.40	0.52	0.70	0.72	0.61 ± 0.02	6.0
RC (dt)	0.74	0.50	0.51	0.70	0.72	0.63 ± 0.01	8.6
RC (rf)	0.81	0.45	0.45	0.75	0.82	0.66 ± 0.03	8.8
RC (svr)	0.70	0.40	0.51	0.67	0.71	0.60 ± 0.02	4.2
ERC (dt)	0.78	0.50	0.49	0.72	0.76	0.65 ± 0.02	8.6
ERC (rf)	0.83	0.44	0.44	0.76	0.83	0.66 ± 0.04	8.6
ERC (svr)	0.71	0.40	0.50	0.67	0.72	0.60 ± 0.02	5.0
mmERC (dt)	0.72	0.50	0.51	0.69	0.71	0.63 ± 0.01	8.2
mmERC (rf)	0.69	0.43	0.44	0.63	0.67	0.57 ± 0.02	2.2
mmERC (svr)	0.69	0.40	0.52	0.67	0.68	0.59 ± 0.02	4.6

(a) UCF results for the synthetic datasets.

mmERC (RF)

Layered Regressor Chains (LRC)

Example of a single chain in ensemble:

L = 4 targets, K = 3 layers, p = 2 inter-layer connections

Single chain:

- Generate a random DAG in each of K layers
- Add *p* inter-layer connections for each two neighbour layers

Ensemble:

- Train *n* random layered chains
- Extract predictions from the last layer
- For each target, take mean of all predictions

Layered Regressor Chains (LRC)

Example of a single chain in ensemble: L = 4 targets, K = 3 layers, p = 2 inter-layer connections

Comparing to NNs:

Single chain:

- Generate a random DAG in each of K layers
- Add *p* inter-layer connections for each two neighbour layers

Ensemble:

- Train *n* random layered chains
- Extract predictions from the last layer
- For each target, take mean of all predictions
- \cdot No back-propagation \implies any BaseEstimator
- · Less connections \implies lower complexity
- Work better for small datasets
- Need to train using labels from training data on each layer

mmERC + LRC: results under UCF

Regressor	andro	dtp1d	dlard	jura	06392	osales	44	dunns.	Scipt	AvgRank
DT	0.72	0.33	0.34	0.48	0.88	0.94	0.01	0.66	0.18	7.39
RF	0.71	0.23	0.35	0.41	0.80	0.94	0.02	0.54	0.16	5.94
IR (dt)	0.70	0.32	0.39	0.46	0.91	0.97	0.03	0.53	0.18	8.28
IR (rf)	0.57	0.20	0.33	0.41	0.78	0.98	0.03	0.44	0.17	4.61
IR (svr)	0.64	0.70	0.86	0.60	0.93	1.00	0.10	0.46	0.23	10.67
RC (dt)	0.69	0.32	0.40	0.49	0.91	0.97	0.02	0.43	0.17	6.94
RC (rf)	0.66	0.22	0.36	0.37	0.78	0.99	0.02	0.38	0.18	5.11
RC (svr)	0.96	0.48	0.71	0.55	0.98	0.98	0.82	0.67	0.22	11.83
LRC (dt)	0.57	0.22	0.30	0.43	0.86	0.94	0.03	0.50	0.17	5.11
LRC (rf)	0.55	0.19	0.25	0.37	0.78	0.96	0.01	0.36	0.18	2.56
LRC (svr)	0.89	0.74	0.81	0.61	0.95	1.00	0.30	0.46	0.23	11.78
LRC + mmERC (dt)	0.47	0.25	0.25	0.39	0.89	0.98	0.01	0.49	0.16	4.11
LRC + mmERC (rf)	0.72	0.23	0.43	0.40	0.87	0.99	0.02	0.41	0.20	7.00
LRC + mmERC (svr)	0.94	0.98	0.96	0.67	1.00	1.00	0.57	0.71	0.25	13.67

Imputation of missing values in genomic data

Single Nucleotide Polymorphisms (SNP)

Single Nucleotide Polymorphisms (SNP)

A = prevalent variant (wild-type), a = rare variant (mutant) AA = 0 Aa = 1 aa = 2

Single Nucleotide Polymorphisms (SNP)

A = prevalent variant (wild-type), a = rare variant (mutant) A

$$A = 0$$
 $Aa = 1$ $aa = 2$

Features:
$$M = 10^5 - 10^7$$

Samples: $N = 10^3 - 10^5$ "Fat data" $X \in \{0, 1, 2\}^{N \times M}$

What for:

- predicting phenotypes (i.e. diseases/traits)
- prioritizing features

What for:

- predicting phenotypes (i.e. diseases/traits)
- prioritizing features

State-of-the-art:

Perform a statistical test of association between each feature and the phenotype

What for:

- predicting phenotypes (i.e. diseases/traits)
- prioritizing features

State-of-the-art:

Perform a statistical test of association between each feature and the phenotype

Limitations:

- lack of statistical power
- $\cdot\,$ dependencies between targets are not taken into consideration

What for:

- predicting phenotypes (i.e. diseases/traits)
- prioritizing features

State-of-the-art:

Perform a statistical test of association between each feature and the phenotype

Limitations:

- lack of statistical power
- $\cdot\,$ dependencies between targets are not taken into consideration

Overcoming limitations:

Machine learning methods (e.g. linear models on graph networks / deep NNs)

Problem:

Missing values (up to $\sim 30-40\%$)

Problem:

Missing values (up to \sim 30 - 40%)

Imputation of missing values:

- can add more variants to a genetic region and increase the chances of identifying a causal variant
- facilitates the combination of results in meta-analysis when a number of studies is combined
- increases the accuracy in detecting an association signal

Imputation methods for SNP datasets

Reference-based

(fastPHASE (Scheet and Stephens, 2006), IMPUTE4 (Bycroft et al., 2017), BEAGLE (Browning et al., 2018), MACH (Li et al., 2010), etc.)

- Short chromosome segments can be inherited from a distant common ancestor
- In presence of reference panel of high quality: state-of-the-art. The accuracy is mainly determined by quality of the reference panel, and concordance of ethnicity between the data and the reference panel

Imputation methods for SNP datasets

Reference-based

(fastPHASE (Scheet and Stephens, 2006), IMPUTE4 (Bycroft et al., 2017), BEAGLE (Browning et al., 2018), MACH (Li et al., 2010), etc.)

- Short chromosome segments can be inherited from a distant common ancestor
- In presence of reference panel of high quality: state-of-the-art. The accuracy is mainly determined by quality of the reference panel, and concordance of ethnicity between the data and the reference panel

Reference-free

- Replacement with mean, median, or mode statistics
- Nearest Neighbors, Random Forests, Logistic Regression
- Autoencoders (Chen and Shi, 2019)

Autoencoders

Autoencoders

Denoising autoencoders: minimizing $L(X, g(f(\widetilde{X})))$

Autoencoders

Denoising autoencoders: minimizing $L(X, g(f(\widetilde{X})))$

Sparse Convolutional Denoising Autoencoders (Chen and Shi, 2019):

- Deep learning methods vs. fat data: ?
- Imputing missing values with a mode is known to be more effective than taking a mean
- Chaining approach can be useful in predicting missing values

- Deep learning methods vs. fat data: ?
- Imputing missing values with a mode is known to be more effective than taking a mean
- Chaining approach can be useful in predicting missing values

<i>X</i> ₁	X ₂
	?
?	
	?
	?

- Deep learning methods vs. fat data: ?
- Imputing missing values with a mode is known to be more effective than taking a mean
- $\cdot\,$ Chaining approach can be useful in predicting missing values

<i>X</i> ₁	<i>X</i> ₂
	?
?	
	?
	?

<i>X</i> ₁	<i>X</i> ₂
	?
	?
	?
?	

- Deep learning methods vs. fat data: ?
- Imputing missing values with a mode is known to be more effective than taking a mean
- $\cdot\,$ Chaining approach can be useful in predicting missing values

<i>X</i> ₁	<i>X</i> ₂
	?
?	
	?
	?

- Deep learning methods vs. fat data: ?
- Imputing missing values with a mode is known to be more effective than taking a mean
- \cdot Chaining approach can be useful in predicting missing values

<i>X</i> ₁	<i>X</i> ₂
	?
?	
	?
	?

<i>X</i> ₁	<i>X</i> ₂
	\rightarrow
	?
	?
	?
?	

<i>X</i> ₁	X ₂
?	

- Deep learning methods vs. fat data: ?
- Imputing missing values with a mode is known to be more effective than taking a mean
- Chaining approach can be useful in predicting missing values

<i>X</i> ₁	<i>X</i> ₂
	?
?	
	?
	?

<i>X</i> ₁	X ₂
	\rightarrow
	?
	?
	?
?	

- Deep learning methods vs. fat data: ?
- Imputing missing values with a mode is known to be more effective than taking a mean
- Chaining approach can be useful in predicting missing values

<i>X</i> ₁	<i>X</i> ₂
	?
?	
	?
	?

Х ₁	X ₂
	\rightarrow
	?
	?
	?
?	

Preliminary results

Autoencoders idea for non-NN multi-target methods: $f(\widetilde{X}) \to X$

Preliminary results

Autoencoders idea for non-NN multi-target methods: $f(\widetilde{X}) \to X$

Mushroom dataset

Not SNP, but only categorical features (22 features, 8124 samples)

	Mode	DT	RF	IR(dt)	CC(dt)	MLPc
+ imputed	0.598	0.781	0.753	0.764	0.789	0.739
- changed	0.000	0.071	0.078	0.0002	0.001	0.085

Real SNP dataset (Blueberry)

Slice of data (100 features, 1000 samples)

	Mode	DT	RF	IR(dt)	CC(dt)	MLPc
+ imputed	0.769	0.734	0.796	0.773	0.787	0.821
- changed	0.000	0.229	0.184	0.002	0.004	0.135

Thank you!