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Introduction: Multi-output
prediction



Machine learning

Raccoon? YES

Raccoon? NO

We want to find the best model f:

X f−→ y

f : f(X) = ŷ,
such that the loss function L(ŷ, y) is minimal.

Examples of loss functions:
• Regression: MSE, MAE

• Classification: 0/1 loss
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Multi-output machine learning

Raccoon? YES

f1(X) = y1
Wolf? NO f2(X) = y2
Beaver? NO
Has stripes? YES f4(X) = y4
Has fur? YES f5(X) = y5
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Multi-output machine learning

Raccoon? YES

f1(X) = y1

Wolf? NO

f2(X) = y2

Beaver? NO f(X) = y
Has stripes? YES

f4(X) = y4

Has fur? YES

f5(X) = y5

y = (y1, y2, y3, y4, y5)

Idea: to model these labels together in
order to get better prediction
performance
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Chaining methods



Definition of a multi-output problem

Given:

Dataset D = {(xi, yi)}Ni=1 of N samples:

• features xi = [xi1, ..., xiM]
• outputs yi = [yi1, ..., yiL]

Goal:

Model which outputs predictions ŷi = [ŷi1, ..., ŷiL] having D observed.

Ra
cco
on
?

Wo
lf?

Be
ave
r?

Ha
s s
trip
es?

Ha
s f
ur?

x1 1 0 0 1 1
x2 1 0 0 0 1
x3 0 0 1 0 1
x4 0 1 0 0 1
x5 0 0 0 1 0

x6 ? ? ? ? ?
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Some approaches to multi-output problems

• Independent models (= binary relevance for classification):

ŷ = [ŷ1, ..., ŷL] = [h1(x), ...,hL(x)]
y4y3y2y1

x

• Fully-cascaded chain:

ŷ = [ŷ1, ..., ŷL] = [h1(x),h2(x, ŷ1), ...,hL(x, ŷ1, ..., ŷL−1)]

h1,h2, ...,hL = Base Estimators (i.e. any
single-output models)

y4y3y2y1

x
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ave
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s s
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ur?
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ŷ = [ŷ1, ..., ŷL] = [h1(x),h2(x, ŷ1), ...,hL(x, ŷ1, ..., ŷL−1)]
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Does the chaining approach work?

Classification

Classifier Chains have proved to
be flexible and effective and have
achieved state-of-the-art
empirical performance

• Classifier Chains: A Review and
Perspectives, Read et al., 2021

Regression

Regressor Chains show relatively
few advantages compared to
individual regression models.
State-of-the-art methods:
• Multi-output Decision Trees
(DT)

• Multi-output Random Forests
(RF)

• Independent Regressors (IR)
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Regressor chains: why don’t they work?

1. Inadequate choice of the loss function to optimize
Most models optimize MSE = 1

N
∑N

j=1(yj − ŷj)2.
• Example: multi-modal distribution =⇒ standard models may be
inappropriate.

• Optimizing MSE does not help to exploit the dependencies
between the targets.

2. Insufficient depth of the model
• Only one round of prediction
• Fixed cascaded order
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Our improvements for Regressor Chains

1. Multi-Modal Ensembles of Regressor Chains
(mmERC) =

= Ensembles of Regressor Chains +
+ Mechanism 1 (BaseEstimator level) +
+ Mechanism 2 (Ensemble level)

E. Antonenko, J. Read, Multi-Modal Ensembles of Regressor Chains for
Multi-Output Prediction, submitted to IDA-2022 conference (Rennes, France).

2. Layered Regressor Chains (LRC)

x

y4y3y2y1

y4y3y2y1

y4y3y2y1
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Multi-Modal Ensembles of Regressor Chains (mmERC)

Uniform Cost Function (UCF) is an analogue of 0/1 loss for regression.

UCF(δ) = 1
N

N∑
i=1

{
0 if ∥yi − ŷi∥2 < δ

2 ,

1 otherwise.

Goal = problem: optimize UCF.

ERC mmERC
BaseEstimator level single round train on all dataset,

of training choose portion of data
giving best predictions,
retrain on this part

Ensemble level mean for all choose the biggest
predictions cluster of predictions,

take mean for
this cluster only
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mmERC: results on a synthetic dataset
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Layered Regressor Chains (LRC)

x

y4y3y2y1

y4y3y2y1

y4y3y2y1

Example of a single chain in ensemble:
L = 4 targets,
K = 3 layers,

p = 2 inter-layer connections

Single chain:

• Generate a random DAG in each of K layers

• Add p inter-layer connections for each two
neighbour layers

Ensemble:

• Train n random layered chains

• Extract predictions from the last layer

• For each target, take mean of all predictions

Comparing to NNs:

• No back-propagation =⇒ any BaseEstimator

• Less connections =⇒ lower complexity

• Work better for small datasets

• Need to train using labels from training data on each layer
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mmERC + LRC: results under UCF

Regressor an
dr
o

at
p1
d

at
p7
d

ju
ra

oe
s9
7

os
ale
s

rf1 slu
m
p

sc
pf

Av
gR
an
k

DT 0.72 0.33 0.34 0.48 0.88 0.94 0.01 0.66 0.18 7.39
RF 0.71 0.23 0.35 0.41 0.80 0.94 0.02 0.54 0.16 5.94
IR (dt) 0.70 0.32 0.39 0.46 0.91 0.97 0.03 0.53 0.18 8.28
IR (rf) 0.57 0.20 0.33 0.41 0.78 0.98 0.03 0.44 0.17 4.61
IR (svr) 0.64 0.70 0.86 0.60 0.93 1.00 0.10 0.46 0.23 10.67
RC (dt) 0.69 0.32 0.40 0.49 0.91 0.97 0.02 0.43 0.17 6.94
RC (rf) 0.66 0.22 0.36 0.37 0.78 0.99 0.02 0.38 0.18 5.11
RC (svr) 0.96 0.48 0.71 0.55 0.98 0.98 0.82 0.67 0.22 11.83

LRC (dt) 0.57 0.22 0.30 0.43 0.86 0.94 0.03 0.50 0.17 5.11
LRC (rf) 0.55 0.19 0.25 0.37 0.78 0.96 0.01 0.36 0.18 2.56
LRC (svr) 0.89 0.74 0.81 0.61 0.95 1.00 0.30 0.46 0.23 11.78

LRC + mmERC (dt) 0.47 0.25 0.25 0.39 0.89 0.98 0.01 0.49 0.16 4.11
LRC + mmERC (rf) 0.72 0.23 0.43 0.40 0.87 0.99 0.02 0.41 0.20 7.00
LRC + mmERC (svr) 0.94 0.98 0.96 0.67 1.00 1.00 0.57 0.71 0.25 13.67
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Imputation of missing values in
genomic data



Single Nucleotide Polymorphisms (SNP)

A = prevalent variant (wild-type), a = rare variant (mutant)
AA = 0 Aa = 1 aa = 2

Features: M = 105 − 107

Samples: N = 103 − 105

}
“Fat data” X ∈ {0, 1, 2}N×M
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Genome-Wide Association Studies (GWAS)

What for:

• predicting phenotypes (i.e. diseases/traits)
• prioritizing features

State-of-the-art:

Perform a statistical test of association between each feature and
the phenotype

Limitations:

• lack of statistical power
• dependencies between targets are not taken into consideration

Overcoming limitations:

Machine learning methods (e.g. linear models on graph networks /
deep NNs)
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Missing values

Problem:
Missing values (up to ∼ 30− 40%)

Imputation of missing values:
• can add more variants to a genetic region and increase the
chances of identifying a causal variant

• facilitates the combination of results in meta-analysis when a
number of studies is combined

• increases the accuracy in detecting an association signal
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Imputation methods for SNP datasets

Reference-based
(fastPHASE (Scheet and Stephens, 2006), IMPUTE4 (Bycroft et al., 2017), BEAGLE (Browning et al., 2018), MACH (Li et al., 2010), etc.)

• Short chromosome segments can be inherited from a distant
common ancestor

• In presence of reference panel of high quality: state-of-the-art.
The accuracy is mainly determined by quality of the reference
panel, and concordance of ethnicity between the data and the
reference panel

Reference-free
• Replacement with mean, median, or mode statistics
• Nearest Neighbors, Random Forests, Logistic Regression
• Autoencoders (Chen and Shi, 2019)
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Autoencoders

Denoising autoencoders: minimizing L(X,g(f(X̃)))

Sparse Convolutional Denoising Autoencoders (Chen and Shi, 2019):
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Chains for SNP missing values imputation

• Deep learning methods vs. fat data: ?
• Imputing missing values with a mode is known to be more
effective than taking a mean

• Chaining approach can be useful in predicting missing values

x1 x2

?
?

?

?

x1 x2

?
?
?

?

x1 x2

?

x1 x2
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Preliminary results

Autoencoders idea for non-NN multi-target methods: f(X̃) → X

Mushroom dataset

Not SNP, but only categorical features (22 features, 8124 samples)

Mode DT RF IR(dt) CC(dt) MLPc
+ imputed 0.598 0.781 0.753 0.764 0.789 0.739
- changed 0.000 0.071 0.078 0.0002 0.001 0.085

Real SNP dataset (Blueberry)

Slice of data (100 features, 1000 samples)

Mode DT RF IR(dt) CC(dt) MLPc
+ imputed 0.769 0.734 0.796 0.773 0.787 0.821
- changed 0.000 0.229 0.184 0.002 0.004 0.135
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Thank you!
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