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Missing data

Why is data missing?

• Errors in sensors

• Human factor (reluctance to answer particular questions)

• Combining different studies

• ...

Why to impute the missing data?

• Most off-the-shelf statistical and machine learning methods cannot handle

missing values

• Considering only instances with complete information can lead to a loss of

necessary information and can yield a very poor or even empty dataset

• Missing data itself might be of interest

Types of missingness

• Missing Completely at Random (MCAR): entirely independently of feature

values

• Missing at Random (MAR): depends only on the observed feature values

• Missing Not at Random (MNAR): depends on both the observed and the

unobserved feature values

2



Missing data

Why is data missing?

• Errors in sensors

• Human factor (reluctance to answer particular questions)

• Combining different studies

• ...

Why to impute the missing data?

• Most off-the-shelf statistical and machine learning methods cannot handle

missing values

• Considering only instances with complete information can lead to a loss of

necessary information and can yield a very poor or even empty dataset

• Missing data itself might be of interest

Types of missingness

• Missing Completely at Random (MCAR): entirely independently of feature

values

• Missing at Random (MAR): depends only on the observed feature values

• Missing Not at Random (MNAR): depends on both the observed and the

unobserved feature values

2



Missing data

Why is data missing?

• Errors in sensors

• Human factor (reluctance to answer particular questions)

• Combining different studies

• ...

Why to impute the missing data?

• Most off-the-shelf statistical and machine learning methods cannot handle

missing values

• Considering only instances with complete information can lead to a loss of

necessary information and can yield a very poor or even empty dataset

• Missing data itself might be of interest

Types of missingness

• Missing Completely at Random (MCAR): entirely independently of feature

values

• Missing at Random (MAR): depends only on the observed feature values

• Missing Not at Random (MNAR): depends on both the observed and the

unobserved feature values
2



Imputation methods

• Multiple Imputation by Chained Equations (MICE)

· first, imputes randomly

· then iteratively models each feature by all other features

• Autoencoders

· are neural networks with an output equal to the input

· model hidden structure

· are able to “denoise” data

· require complete data for training

• PCA transformation

· is essentially similar to Autoencoders with one hidden layer and linear

activation function

Our contribution:

• framework unifying the methods above

• new methodology: Autoreplicative Random Forests (ARF)

• code implementation of the framework
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Procedural and Iterative

Imputation



Framework

Iterative: first, impute randomly; then update iteratively

Procedural: train on complete instances; predict for incomplete instances

Iterative Procedural

Single-target MICE

Autoencoders

Autoencoders

Multi-target

PCA

PCA

ARF ARF
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Procedural models

One procedure:

• Train a [multi-target] model on complete

instances

• Use the fitted model to predict on instances

containing missing values

• Correct observed values if changed

Missing
Dataset

Select complete
subset

Train
model

Predict
missing values

1: procedure Procedural Imputation(Xna)

2: Xtrain ← Xcomplete ▷ Select complete cases for training

3: X̃train ← Xtrain corrupted with missing values ▷ Uniformly distributed, %

of m.v. calculated from

Xmissing

4: Xtest ← Xmissing

5: Fit model on (X̃train,Xtrain)

6: Xpred ← replace m.v. with predictions of fitted model on Xtest

NB: needs enough complete data to train a reliable model
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Iterative model

First, impute randomly

Then, iteratively until convergence is reached:

• Train a [multi-target] model on previous

imputation

• Use the fitted model to predict on all

instances

• Correct observed values if changed

Missing Dataset Imputed Dataset

Learn
the model

Predict the
missing values

Randomly

Repeat
until convergence

1: procedure Iterative Imputation(Xna, α)

2: X 0
imp ← random imputation of m.v. in Xna

3: while ∆imp > α do

4: Fit model on (Xna,X
n−1
imp )

5: X n
imp ← replace m.v. with predictions of fitted model on Xna

6: ∆imp ← distance [accuracy] between X n
imp and X n−1

imp

Also: probabilistic extension (more on that later)
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Autoencoders =⇒ Autoreplicative Random Forests

Autoencoder Denoising Autoencoder

Autoreplicator

Why to use multi-label methods?

• compared to one-by-one methods: may deeper exploit interdependencies

between the targets

• compared to neural networks: fewer parameters (good for low-sampled data)

• no need for hidden layers

Which methods?

• Decision Trees, Random Forests, Extra Trees

• Classifier Chains, Multilabel k Nearest Neighbours, Random k-Labelsets,

Conditional Dependency Networks, etc.
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Results: iterative ARF do converge

Imputation via Iterative Random Forests converges after several iterations
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Accuracy of imputation

MVR 0.01 0.05 0.1 0.2 0.3 0.01 0.05 0.1 0.2 0.3 0.01 0.05 0.1 0.2 0.3

Mushroom [8,124 x 22] Soybean [307 x 35] Tumor [339 x 17]

Complete cases 80.1% 32.3% 10.1% 0.7% 0.04% 69.7% 13.7% 1.0% 0% 0% 83.8% 38.9% 15.0% 1.2% 0.3%

MICE 0.658 0.715 0.741 0.769 0.777 0.884 0.884 0.879 0.867 0.850 0.761 0.768 0.748 0.754 0.735

itARF 0.730 0.740 0.747 0.734 0.707 0.824 0.850 0.832 0.815 0.789 0.652 0.672 0.645 0.660 0.620

pARF 0.748 0.774 0.761 0.671 0.478 0.804 0.779 0.600 – – 0.639 0.696 0.650 0.694 0.635

itAE 0.608 0.618 0.604 0.584 0.569 0.653 0.607 0.608 0.584 0.590 0.721 0.732 0.692 0.711 0.710

pAE 0.580 0.494 0.491 0.538 0.428 0.653 0.622 0.594 – – 0.721 0.718 0.692 0.690 0.497

itPCA 0.604 0.627 0.622 0.623 0.618 0.667 0.692 0.671 0.646 0.603 0.721 0.740 0.692 0.711 0.710

pPCA 0.600 0.587 0.578 0.537 0.441 0.655 0.639 0.620 – – 0.721 0.671 0.688 0.626 0.411

Votes [435 x 16] Lymphography [148 x 18] Financial Survey [6,394 x 212]

Complete cases 85.3% 42.2% 18.5% 1.3% 0.4% 81.8% 40.5% 14.9% 2.7% 0% 11.8% 0% 0% 0% 0%

MICE 0.768 0.795 0.771 0.768 0.782 0.750 0.679 0.665 0.648 0.651 – – – – –

itARF 0.719 0.726 0.728 0.723 0.718 0.714 0.639 0.638 0.628 0.600 0.684 0.677 0.676 0.667 0.661

pARF 0.730 0.758 0.756 0.522 0.495 0.636 0.647 0.604 0.608 – 0.633 – – – –

itAE 0.697 0.563 0.602 0.578 0.570 0.700 0.474 0.485 0.448 0.487 0.626 0.617 0.616 0.604 0.596

pAE 0.638 0.546 0.600 0.524 0.488 0.679 0.514 0.563 0.611 – 0.313 – – – –

itPCA 0.665 0.583 0.567 0.572 0.570 0.686 0.513 0.477 0.468 0.484 0.653 0.645 0.645 0.634 0.627

pPCA 0.595 0.499 0.567 0.507 0.453 0.693 0.536 0.562 0.502 – 0.299 – – – –

• Procedural ARFs: may be powerful when enough complete instances

• MICE: as powerful as computationally expensive

• Iterative ARFs: still powerful + significantly quicker
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Time complexity

In theory:

· p = number of features

· niter = number of iterations

itARF pARF MICE

O(niter · p) O(p) O(niter · p2)

In practice:
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Probabilistic Autoreplicative Random Forests

Extension of iterative Autoreplicative Random Forests:

• First, randomly impute with probabilities

• In each iteration:

· M imputations are sampled from the previous distribution

· M trees of a Random Forest are trained on different imputations

· The Random Forest produces one probabilistic imputation

1: procedure Probabilistic Iterative Imputation(Xna, α)

2: H0 ← {h01, h02, . . . , h0M} ▷ Random Forest of M trees

3: p0imp ← random imputation with probabilities from {U[0,1]}
4: while ∆imp > α do

5: Hn ← {hn1 , hn2 , . . . , hnM} ▷ Random Forest of M trees

6: for hnm ∈ Hn do

7: X n,m
imp ∼ pn−1

imp ▷ Impute by sampling from distributions

8: Fit a tree hnm on (Xna,X
n,m
imp )

9: pnimp ← probabilities provided by fitted Hn

10: ∆imp ← distance between pnimp and pn−1
imp

11



Probabilistic Autoreplicative Random Forests

Graphically, we can see it as:

Missing Dataset

Learn
the model

Predict the probabilities
for the missing values

Repeat
until convergence

Convert to probabilistic output
and randomly input

missing value probabilities 3 1 5 0.00 1.00 0.50 0.50

Imputed probabilistic
dataset

Sample a dataset
for each tree based

on probabilities

Example

Complete Missing

Figure 1: Graphical representation of the Probabilistic Autoreplicative Random

Forests.
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Probabilistic Autoreplicative Random Forests

Similarities with the Expectation Maximization (EM) algorithm.

BUT! EM converges in Likelihood. What about RF?

Which function are we optimizing?

• We say it has converged, when there are no changes in the predicted

probabilities.
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Probabilistic Autoreplicative Random Forests

In practice, we are overfitting the data.

Experimental settings:

• Select the amount of x(mx) and y(my ) variables and its cardinality.

• Specify the % of missingness.

• Select the amount of instances we want to generate (n).

• Generate a p(x, y) assigning probabilities to each pair (x, y) from a

normal distribution.

• Obtain the following metrics for each iteration:

• Accuracy

• Exact match: 1
n

∑n
i=1 1(ŷ = y)

• Brier Score: 1
n

∑n
i=1(p(y|x)− p̂(y|x))2

14



Probabilistic Autoreplicative Random Forests
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(a) Scores obtained at each iteration.
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(b) Each individual line represents the

p̂(y1 = 0|x) through the iterations.

Figure 2: Experiments on a synthetic dataset. n = 100, mx = 4, my = 4. The

cardinality of the variables is 4. 20% of instances with missing values.
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Ideas to improve Probabilistic ARFs

We don’t know exactly if we are going to converge to the true

posterior distribution p(y|x)
Is there anything related in the literature?

Estimation of Distribution Algorithms (EDAs) 1 were proposed for

optimization problems.

Ingredients:

• Population → Instances of our dataset.

• Spinoff generation → How to sample a RF?

• Fitness function → 0-1 loss, accuracy.

• Data selection → Based on Accuracy? Minimizing entropy?

1Larrañaga, P. and Lozano, J. A. (Eds.). (2001). Estimation of distribution

algorithms: A new tool for evolutionary computation (Vol. 2). Springer Science

Business Media.
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Chains of Autoreplicative

Random Forests



Usecase: Single Nucleotide Polymorphisms (SNP)

Copyright: Scientific DX GmbH, 2020

• Categorical: 0 (dominant-dominant), 1 (dominant-mutant), 2 (mutant-mutant)

• High-dimensional (105 − 106) and low-sampled (102 − 103)

• Ordering is important

• Missing values occur due to external mechanisms =⇒ MCAR

Methods:

• reference-based (state-of-the-art for human data)

• reference-free (when reference panels are not available).

Other possible examples: gene expression arrays, classification problems in astronomy,

tool development for finance data, and weather prediction.
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Chains of Autoreplicative Random Forests

• Procedural approach:

one window of size ∆ =

complete instances +

instances with missing values

• Chain of windows:

on each step, stacking ν

windows with already

imputed values as additional

features

• Ensemble of chains:

one forward chain, one

backward chain, several

random chains

18



Gridsearch for parameters ∆ and ν

1% 5% 10% 20% 30%

Lighter color / higher accuracy

∆: bigger fraction of missing values → smaller size of window =⇒
can be estimated theoretically, no need for search

ν: may depend on problem

19



Accuracy

0.01 0.05 0.1 0.2 0.3 0.01 0.05 0.1 0.2 0.3

Maize [247 x 44,729] Eucalyptus [970 x 33,398]

ChARF 0.952 0.935 0.916 0.882 0.845 0.970 0.950 0.926 0.866 0.810

kNN (5/10) 0.803 0.802 0.801 0.798 0.794 0.851 0.849 0.847 0.843 0.839

mode 0.727 0.727 0.726 0.727 0.726 0.725 0.732 0.731 0.730 0.729

SVD (50/500) 0.647 0.648 0.645 0.643 0.636 0.788 0.788 0.788 0.785 0.780

MICE – – – – – – – – – –

Colorado Beetle [188 x 34,186] Arabica Coffee [596 x 4,666]

ChARF 0.835 0.824 0.818 0.805 0.792 0.897 0.886 0.878 0.866 0.854

kNN (50/10) 0.765 0.763 0.765 0.765 0.764 0.867 0.866 0.866 0.865 0.864

mode 0.761 0.760 0.762 0.761 0.761 0.807 0.804 0.805 0.805 0.804

SVD (50/100) 0.740 0.737 0.737 0.735 0.734 0.693 0.694 0.696 0.692 0.690

MICE – – – – – 0.757 0.741 0.724 0.689 0.664

Wheat [388 x 9,763] Coffea Canephora [119 x 45,748]

ChARF 0.821 0.808 0.795 0.777 0.762 0.799 0.781 0.761 0.731 0.717

kNN (10/10) 0.823 0.819 0.818 0.815 0.811 0.737 0.739 0.737 0.734 0.731

mode 0.729 0.727 0.729 0.729 0.727 0.691 0.693 0.692 0.692 0.691

SVD (200/50) 0.622 0.618 0.609 0.600 0.594 0.456 0.453 0.450 0.449 0.450

MICE 0.641 0.635 0.621 0.585 0.545 – – – – –

• MICE: run with 10 neighbors for each feature, still worked only for smaller data

• Autoencoders: not taken into comparison (no complete data for training)

• Well-known methods for SNP imputation: k Nearest Neighbors, Single Value

Decomposition 20



Conclusions

• Unusual and effective usage of multi-label methods, e.g. Random

Forests:

· autoreplication

· missing value imputation

· denoising

· outlier detection

• We show how probabilistic training can be easily added to the model

• ARF vs MICE: high quality and much faster

• ARF vs Autoencoders:

· no need for one-hot encoding =⇒ less features.

· lower time complexity =⇒ works for high-dimensional datasets

· no need for complete data
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Questions of interest

• Multi-target Random Forests still optimize decomposable metrics

(entropy, gini):

can we model the labels indeed jointly?

• For very wide datasets (> 10, 000 features) multi-target methods are

very memory expensive

• Studies for MAR and MNAR scenarios

• Regression (e.g. gene expression)

• How can we avoid overfitting in Iterative RF?

22
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Thank you!
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