Autoreplicative Random Forests for missing value imputation

Ekaterina Antonenko and Ander Carreño DaSciM seminar, École Polytechnique, March 10, 2023 Laboratoire d'informatique, École Polytechnique, IP Paris

BCAM - Basque Center for Applied Mathematics

Missing data

Why is data missing?

- Errors in sensors
- Human factor (reluctance to answer particular questions)
- Combining different studies
- ...

Missing data

Why is data missing?

- Errors in sensors
- Human factor (reluctance to answer particular questions)
- Combining different studies
- ...

Why to impute the missing data?

- Most off-the-shelf statistical and machine learning methods cannot handle missing values
- Considering only instances with complete information can lead to a loss of necessary information and can yield a very poor or even empty dataset
- Missing data itself might be of interest

Missing data

Why is data missing?

- Errors in sensors
- Human factor (reluctance to answer particular questions)
- Combining different studies
- ...

Why to impute the missing data?

- Most off-the-shelf statistical and machine learning methods cannot handle missing values
- Considering only instances with complete information can lead to a loss of necessary information and can yield a very poor or even empty dataset
- Missing data itself might be of interest

Types of missingness

- Missing Completely at Random (MCAR): entirely independently of feature values
- Missing at Random (MAR): depends only on the observed feature values
- Missing Not at Random (MNAR): depends on both the observed and the unobserved feature values

Imputation methods

- Multiple Imputation by Chained Equations (MICE)
 - $\cdot\,$ first, imputes randomly
 - $\cdot\,$ then iteratively models each feature by all other features
- Autoencoders
 - $\cdot\,$ are neural networks with an output equal to the input
 - $\cdot \,$ model hidden structure
 - $\cdot\,$ are able to "denoise" data
 - $\cdot\,$ require complete data for training
- PCA transformation
 - $\cdot\,$ is essentially similar to Autoencoders with one hidden layer and linear activation function

Imputation methods

- Multiple Imputation by Chained Equations (MICE)
 - $\cdot\,$ first, imputes randomly
 - $\cdot\,$ then iteratively models each feature by all other features
- Autoencoders
 - $\cdot\,$ are neural networks with an output equal to the input
 - $\cdot \,$ model hidden structure
 - $\cdot\,$ are able to "denoise" data
 - $\cdot\,$ require complete data for training
- PCA transformation
 - $\cdot\,$ is essentially similar to Autoencoders with one hidden layer and linear activation function

Our contribution:

- framework unifying the methods above
- new methodology: Autoreplicative Random Forests (ARF)
- code implementation of the framework

Procedural and Iterative Imputation

Iterative: first, impute randomly; then update iteratively

Procedural: train on complete instances; predict for incomplete instances

	Iterative	Procedural
Single-target	MICE	
Multi-target		Autoencoders PCA

Iterative: first, impute randomly; then update iteratively

Procedural: train on complete instances; predict for incomplete instances

	Iterative	Procedural
Single-target	MICE	
Multi-target	Autoencoders PCA	Autoencoders PCA

Iterative: first, impute randomly; then update iteratively

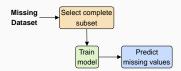
Procedural: train on complete instances; predict for incomplete instances

	Iterative	Procedural			
Single-target	MICE				
Multi-target	Autoencoders PCA ARF	Autoencoders PCA ARF			

Procedural models

One procedure:

- Train a [multi-target] model on complete instances
- Use the fitted model to predict on instances containing missing values
- Correct observed values if changed



1:	procedure	Procedural	IMPUTATION	(X _{na})
----	-----------	------------	------------	--------------------

- 2: $X_{train} \leftarrow X_{complete}$
- 3: $\tilde{X}_{train} \leftarrow X_{train}$ corrupted with missing values

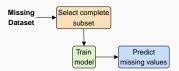
 ▷ Select complete cases for training
 s ▷ Uniformly distributed, %
 of m.v. calculated from *x*^{missing}

- 4: $X_{test} \leftarrow X^{missing}$
- 5: Fit model on $(\tilde{X}_{train}, X_{train})$
- 6: $X_{pred} \leftarrow$ replace m.v. with predictions of fitted model on X_{test}

Procedural models

One procedure:

- Train a [multi-target] model on complete instances
- Use the fitted model to predict on instances containing missing values
- Correct observed values if changed



 1: procedure PROCEDURAL IMPUTATION(X_{na})

 2: $X_{train} \leftarrow X_{complete}$ > Select complete cases for training

 3: $\tilde{X}_{train} \leftarrow X_{train}$ corrupted with missing values
 > Uniformly distributed, %

 4: $X_{test} \leftarrow X^{missing}$ > X_{train}, X_{train}

 5: Fit model on ($\tilde{X}_{train}, X_{train}$)
 6: $X_{pred} \leftarrow$ replace m.v. with predictions of fitted model on X_{test}

NB: needs enough complete data to train a reliable model

Iterative model

First, impute randomly

Then, iteratively until convergence is reached:

- Train a [multi-target] model on previous imputation
- Use the fitted model to predict on all instances
- Correct observed values if changed

1: **procedure** ITERATIVE IMPUTATION(X_{na} , α) 2: $X_{imp}^{0} \leftarrow$ random imputation of m.v. in X_{na} 3: **while** $\Delta_{imp} > \alpha$ **do** 4: Fit model on (X_{na}, X_{imp}^{n-1}) 5: X_{na}^{n} is the maximum distinguishing of fittees

- 5: $X_{imp}^n \leftarrow$ replace m.v. with predictions of fitted model on X_{na}
- 6: $\Delta_{imp} \leftarrow \text{distance [accuracy] between } X_{imp}^n \text{ and } X_{imp}^{n-1}$

Iterative model

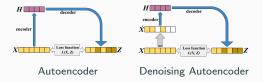
First, impute randomly

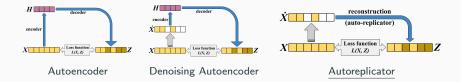
Then, iteratively until convergence is reached:

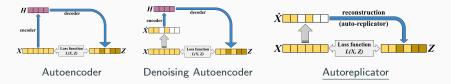
- Train a [multi-target] model on previous imputation
- Use the fitted model to predict on all instances
- Correct observed values if changed

1: **procedure** ITERATIVE IMPUTATION(X_{na} , α) 2: $X_{imp}^{0} \leftarrow$ random imputation of m.v. in X_{na} 3: **while** $\Delta_{imp} > \alpha$ **do** 4: Fit model on (X_{na}, X_{imp}^{n-1}) 5: $X_{imp}^{n} \leftarrow$ replace m.v. with predictions of fitted model on X_{na} 6: $\Delta_{imp} \leftarrow$ distance [accuracy] between X_{imp}^{n} and X_{imp}^{n-1}

Also: probabilistic extension (more on that later)

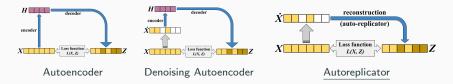






Why to use multi-label methods?

- compared to one-by-one methods: may deeper exploit interdependencies between the targets
- compared to neural networks: fewer parameters (good for low-sampled data)
- no need for hidden layers



Why to use multi-label methods?

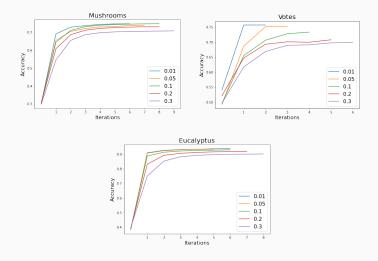
- compared to one-by-one methods: may deeper exploit interdependencies between the targets
- compared to neural networks: fewer parameters (good for low-sampled data)
- no need for hidden layers

Which methods?

- Decision Trees, Random Forests, Extra Trees
- Classifier Chains, Multilabel k Nearest Neighbours, Random k-Labelsets, Conditional Dependency Networks, etc.

Results: iterative ARF do converge

Imputation via Iterative Random Forests converges after several iterations



Accuracy of imputation

MVR	0.01	0.05	0.1	0.2	0.3	0.01	0.05	0.1	0.2	0.3	0.01	0.05	0.1	0.2	0.3
	Mushroom [8,124 × 22] Soybean [307 × 35] Tumor [339 × 17]														
Complete cases	80.1%	32.3%	10.1%	0.7%	0.04%	69.7%	13.7%	1.0%	0%	0%	83.8%	38.9%	15.0%	1.2%	0.3%
MICE	0.658	0.715	0.741	0.769	0.777	0.884	0.884	0.879	0.867	0.850	0.761	0.768	0.748	0.754	0.735
itARF	0.730	0.740	0.747	0.734	0.707	0.824	0.850	0.832	0.815	0.789	0.652	0.672	0.645	0.660	0.620
pARF	0.748	0.774	0.761	0.671	0.478	0.804	0.779	0.600	-	-	0.639	0.696	0.650	0.694	0.635
itAE	0.608	0.618	0.604	0.584	0.569	0.653	0.607	0.608	0.584	0.590	0.721	0.732	0.692	0.711	0.710
pAE	0.580	0.494	0.491	0.538	0.428	0.653	0.622	0.594	-	-	0.721	0.718	0.692	0.690	0.497
itPCA	0.604	0.627	0.622	0.623	0.618	0.667	0.692	0.671	0.646	0.603	0.721	0.740	0.692	0.711	0.710
pPCA	0.600	0.587	0.578	0.537	0.441	0.655	0.639	0.620	-	-	0.721	0.671	0.688	0.626	0.411
		Vote	es [435 ×	(16]		L	ymphog	raphy [1	.48 × 18]	Fina	ancial Su	urvey [6,	394 × 2	12]
Complete cases	85.3%	42.2%	18.5%	1.3%	0.4%	81.8%	40.5%	14.9%	2.7%	0%	11.8%	0%	0%	0%	0%
MICE	0.768	0.795	0.771	0.768	0.782	0.750	0.679	0.665	0.648	0.651	-	-	-	-	-
itARF	0.719	0.726	0.728	0.723	0.718	0.714	0.639	0.638	0.628	0.600	0.684	0.677	0.676	0.667	0.661
pARF	0.730	0.758	0.756	0.522	0.495	0.636	0.647	0.604	0.608	_	0.633	-	-	-	-
itAE	0.697	0.563	0.602	0.578	0.570	0.700	0.474	0.485	0.448	0.487	0.626	0.617	0.616	0.604	0.596
pAE	0.638	0.546	0.600	0.524	0.488	0.679	0.514	0.563	0.611	-	0.313	-	-	-	-
itPCA	0.665	0.583	0.567	0.572	0.570	0.686	0.513	0.477	0.468	0.484	0.653	0.645	0.645	0.634	0.627
pPCA	0.595	0.499	0.567	0.507	0.453	0.693	0.536	0.562	0.502	-	0.299	-	-	-	-

- Procedural ARFs: may be powerful when enough complete instances
- MICE: as powerful as computationally expensive
- Iterative ARFs: still powerful + significantly quicker

Time complexity

In theory:

- $\cdot p =$ number of features
- $\cdot n_{iter} = number of iterations$

itARF	pARF	MICE				
$\mathcal{O}(n_{iter} \cdot p)$	$\mathcal{O}(p)$	$\mathcal{O}(n_{iter} \cdot p^2)$				

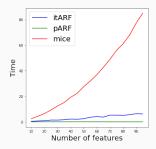
Time complexity

In theory:

- $\cdot p =$ number of features
- \cdot *n_{iter}* = number of iterations

itARF	pARF	MICE			
$\mathcal{O}(n_{iter} \cdot p)$	$\mathcal{O}(p)$	$\mathcal{O}(n_{iter} \cdot p^2)$			

In practice:



Probabilistic Autoreplicative Random Forests

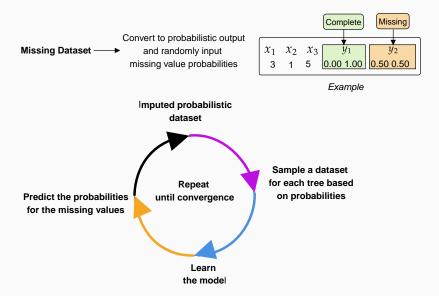
Extension of iterative Autoreplicative Random Forests:

- First, randomly impute with probabilities
- In each iteration:
 - $\cdot \ M$ imputations are sampled from the previous distribution
 - $\cdot~$ M trees of a Random Forest are trained on different imputations
 - $\cdot\,$ The Random Forest produces one probabilistic imputation

1: procedure PROBABILISTIC ITERATIVE IMPUTATION (X_{na}, α) 2: $\mathcal{H}^0 \leftarrow \{h_1^0, h_2^0, \ldots, h_M^0\}$ \triangleright Random Forest of *M* trees 3: $\mathbf{p}_{imp}^{0} \leftarrow$ random imputation with probabilities from $\{\mathcal{U}_{[0,1]}\}$ 4: while $\Delta_{imp} > \alpha$ do $\mathcal{H}^n \leftarrow \{h_1^n, h_2^n, \ldots, h_M^n\}$ 5: \triangleright Random Forest of M trees for $h_m^n \in \mathcal{H}^n$ do 6.
$$\begin{split} X_{imp}^{n,m} &\sim \mathbf{p}_{imp}^{n-1} \\ \text{Fit a tree } h_m^n \text{ on } (X_{na}, X_{imp}^{n,m}) \end{split}$$
7: ▷ Impute by sampling from distributions 8: 9: $\mathbf{p}_{imp}^{n} \leftarrow$ probabilities provided by fitted \mathcal{H}^{n} $\Delta_{imp} \leftarrow \text{distance between } \mathbf{p}_{imp}^n \text{ and } \mathbf{p}_{imp}^{n-1}$ 10:

Probabilistic Autoreplicative Random Forests

Graphically, we can see it as:



Similarities with the Expectation Maximization (EM) algorithm.

BUT! EM converges in Likelihood. What about RF?

Which function are we optimizing?

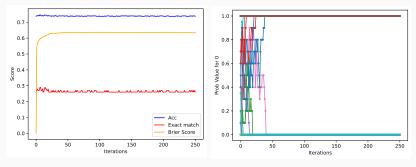
• We say it has converged, when there are no changes in the predicted probabilities.

In practice, we are overfitting the data.

Experimental settings:

- Select the amount of $\mathbf{x}(m_x)$ and $\mathbf{y}(m_y)$ variables and its cardinality.
- Specify the % of missingness.
- Select the amount of instances we want to generate (n).
- Generate a p(x, y) assigning probabilities to each pair (x, y) from a normal distribution.
- Obtain the following metrics for each iteration:
 - Accuracy
 - Exact match: $\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(\hat{\mathbf{y}} = \mathbf{y})$
 - Brier Score: $\frac{1}{n} \sum_{i=1}^{n} (p(\mathbf{y}|\mathbf{x}) \hat{p}(\mathbf{y}|\mathbf{x}))^2$

Probabilistic Autoreplicative Random Forests



(a) Scores obtained at each iteration.

(b) Each individual line represents the $\hat{p}(y_1 = 0|\mathbf{x})$ through the iterations.

Figure 2: Experiments on a synthetic dataset. n = 100, $m_x = 4$, $m_y = 4$. The cardinality of the variables is 4. 20% of instances with missing values.

We don't know exactly if we are going to converge to the true posterior distribution $p(\mathbf{y}|\mathbf{x})$ is there anything related in the literature?

Estimation of Distribution Algorithms (EDAs)¹ were proposed for optimization problems.

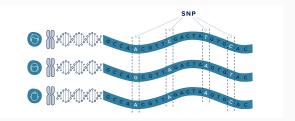
Ingredients:

- $\bullet~\mbox{Population} \rightarrow \mbox{Instances of our dataset.}$
- Spinoff generation \rightarrow How to sample a RF?
- Fitness function \rightarrow 0-1 loss, accuracy.
- Data selection \rightarrow Based on Accuracy? Minimizing entropy?

¹Larrañaga, P. and Lozano, J. A. (Eds.). (2001). Estimation of distribution algorithms: A new tool for evolutionary computation (Vol. 2). Springer Science Business Media.

Chains of Autoreplicative Random Forests

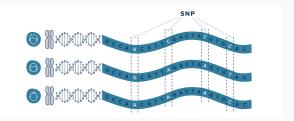
Usecase: Single Nucleotide Polymorphisms (SNP)



Copyright: Scientific DX GmbH, 2020

- Categorical: 0 (dominant-dominant), 1 (dominant-mutant), 2 (mutant-mutant)
- High-dimensional $(10^5 10^6)$ and low-sampled $(10^2 10^3)$
- Ordering is important
- Missing values occur due to external mechanisms \implies MCAR

Usecase: Single Nucleotide Polymorphisms (SNP)



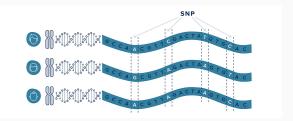
Copyright: Scientific DX GmbH, 2020

- Categorical: 0 (dominant-dominant), 1 (dominant-mutant), 2 (mutant-mutant)
- High-dimensional $(10^5 10^6)$ and low-sampled $(10^2 10^3)$
- Ordering is important
- Missing values occur due to external mechanisms \implies MCAR

Methods:

- reference-based (state-of-the-art for human data)
- reference-free (when reference panels are not available).

Usecase: Single Nucleotide Polymorphisms (SNP)



Copyright: Scientific DX GmbH, 2020

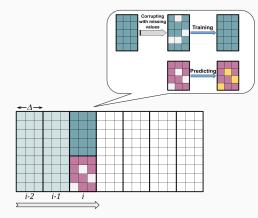
- Categorical: 0 (dominant-dominant), 1 (dominant-mutant), 2 (mutant-mutant)
- High-dimensional $(10^5 10^6)$ and low-sampled $(10^2 10^3)$
- Ordering is important
- Missing values occur due to external mechanisms \implies MCAR

Methods:

- reference-based (state-of-the-art for human data)
- reference-free (when reference panels are not available).

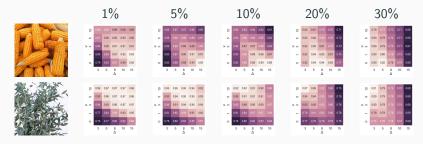
Other possible examples: gene expression arrays, classification problems in astronomy, tool development for finance data, and weather prediction.

Chains of Autoreplicative Random Forests



- Procedural approach: one window of size $\Delta =$ complete instances + instances with missing values
- Chain of windows: on each step, stacking ν windows with already imputed values as additional features
- Ensemble of chains: one forward chain, one backward chain, several random chains

Gridsearch for parameters Δ and ν



Lighter color / higher accuracy

 $\Delta: \text{ bigger fraction of missing values} \to \text{smaller size of window} \implies \\ \text{can be estimated theoretically, no need for search}$

 $\nu :$ may depend on problem

Accuracy

	0.01	0.05	0.1	0.2	0.3	0.01	0.05	0.1	0.2	0.3	
		Maize			Eucalypt	us [970 :	× 33,398]			
ChARF	0.952	0.935	0.916	0.882	0.845	0.970	0.950	0.926	0.866	0.810	
kNN (5/10)	0.803	0.802	0.801	0.798	0.794	0.851	0.849	0.847	0.843	0.839	
mode	0.727	0.727	0.726	0.727	0.726	0.725	0.732	0.731	0.730	0.729	
SVD (50/500)	0.647	0.648	0.645	0.643	0.636	0.788	0.788	0.788	0.785	0.780	
MICE	-	-	-	-	-	-	-	-	-	-	
					1					-1	
	Co	lorado B	eetle [18	8 × 34,1	86]] Arabica Coffee [596 × 4,666]					
ChARF	0.835	0.824	0.818	0.805	0.792	0.897	0.886	0.878	0.866	0.854	
kNN (50/10)	0.765	0.763	0.765	0.765	0.764	0.867	0.866	0.866	0.865	0.864	
mode	0.761	0.760	0.762	0.761	0.761	0.807	0.804	0.805	0.805	0.804	
SVD (50/100)	0.740	0.737	0.737	0.735	0.734	0.693	0.694	0.696	0.692	0.690	
MICE	-	-	-	-	-	0.757	0.741	0.724	0.689	0.664	
		Whea	t [388 ×	9,763]		Cof	fea Cane	phora [1	19 × 45,	748]	
ChARF	0.821	0.808	0.795	0.777	0.762	0.799	0.781	0.761	0.731	0.717	
kNN (10/10)	0.823	0.819	0.818	0.815	0.811	0.737	0.739	0.737	0.734	0.731	
mode	0.729	0.727	0.729	0.729	0.727	0.691	0.693	0.692	0.692	0.691	
SVD (200/50)	0.622	0.618	0.609	0.600	0.594	0.456	0.453	0.450	0.449	0.450	
MICE	0.641	0.635	0.621	0.585	0.545						

- MICE: run with 10 neighbors for each feature, still worked only for smaller data
- Autoencoders: not taken into comparison (no complete data for training)
- Well-known methods for SNP imputation: *k* Nearest Neighbors, Single Value Decomposition

Conclusions

- Unusual and effective usage of multi-label methods, e.g. Random Forests:
 - \cdot autoreplication
 - $\cdot\,$ missing value imputation
 - \cdot denoising
 - $\cdot \,$ outlier detection

Conclusions

- Unusual and effective usage of multi-label methods, e.g. Random Forests:
 - \cdot autoreplication
 - $\cdot\,$ missing value imputation
 - \cdot denoising
 - $\cdot \,$ outlier detection
- We show how probabilistic training can be easily added to the model

Conclusions

- Unusual and effective usage of multi-label methods, e.g. Random Forests:
 - $\cdot \ \ \mathsf{autoreplication}$
 - $\cdot\,$ missing value imputation
 - $\cdot \ \text{denoising}$
 - $\cdot \,$ outlier detection
- We show how probabilistic training can be easily added to the model
- ARF vs MICE: high quality and much faster

- Unusual and effective usage of multi-label methods, e.g. Random Forests:
 - \cdot autoreplication
 - $\cdot\,$ missing value imputation
 - \cdot denoising
 - $\cdot \,$ outlier detection
- We show how probabilistic training can be easily added to the model
- ARF vs MICE: high quality and much faster
- ARF vs Autoencoders:
 - \cdot no need for one-hot encoding \implies less features.
 - $\cdot\,$ lower time complexity \implies works for high-dimensional datasets
 - $\cdot\,$ no need for complete data

• Multi-target Random Forests still optimize decomposable metrics (entropy, gini): can we model the labels indeed jointly?

- Multi-target Random Forests still optimize decomposable metrics (entropy, gini): can we model the labels indeed jointly?
- For very wide datasets (> 10,000 features) multi-target methods are very memory expensive

- Multi-target Random Forests still optimize decomposable metrics (entropy, gini): can we model the labels indeed jointly?
- For very wide datasets (> 10,000 features) multi-target methods are very memory expensive
- Studies for MAR and MNAR scenarios

- Multi-target Random Forests still optimize decomposable metrics (entropy, gini): can we model the labels indeed jointly?
- For very wide datasets (> 10,000 features) multi-target methods are very memory expensive
- Studies for MAR and MNAR scenarios
- Regression (e.g. gene expression)

- Multi-target Random Forests still optimize decomposable metrics (entropy, gini): can we model the labels indeed jointly?
- For very wide datasets (> 10,000 features) multi-target methods are very memory expensive
- Studies for MAR and MNAR scenarios
- Regression (e.g. gene expression)
- How can we avoid overfitting in Iterative RF?

Thank you!