Chains of Autoreplicative Random Forests for missing value imputation in high-dimensional datasets

Multi-Label Learning workshop, ECML/PKDD 2022 Grenoble, France

<u>Ekaterina Antonenko</u> and Jesse Read September 19, 2022

Laboratoire d'informatique, École Polytechnique, IP Paris DigitalentLab, MIA, Moteurs d'Intelligence Artificielle

Why data is missing?

- Errors in sensors
- Human factor (reluctance to answer particular questions)
- Combining different studies
- ...

Why data is missing?

- Errors in sensors
- Human factor (reluctance to answer particular questions)
- Combining different studies
- ...

Why to impute missing data?

- Most off-the-shelf statistical and machine learning methods cannot handle missing values
- Considering only instances with complete information can lead to a loss of necessary information and can yield a very poor or even empty dataset
- Missing data itself might be of interest

• Missing Completely at Random (MCAR)

The absence occurs entirely independently from feature values

• Missing at Random (MAR)

The absence depends only on the observed feature values

• Missing Not at Random (MNAR)

The absence depends on both observed and the unobserved feature values

Methods

Limitations

• Mode / mean / median

 \implies Poor performance

Methods

- Mode / mean / median
- k Nearest Neighbors (kNN)

- \implies Poor performance
- $\implies~$ Ok, but can we do better?

Methods

- Mode / mean / median
- k Nearest Neighbors (kNN)
- Singular Value Decomposition (SVD)

- \implies Poor performance
- $\implies~$ Ok, but can we do better?
- \implies Ok, but can we do better?

Methods

- Mode / mean / median
- k Nearest Neighbors (kNN)
- Singular Value Decomposition (SVD)
- Multiple Imputation by Chained Equations (MICE)

- \implies Poor performance
- \implies Ok, but can we do better?
- $\implies~$ Ok, but can we do better?
- ⇒ Too slow for high-dimensional data

Methods

- Mode / mean / median
- k Nearest Neighbors (kNN)
- Singular Value Decomposition (SVD)
- Multiple Imputation by Chained Equations (MICE)
- MissForest

- \implies Poor performance
- $\implies~$ Ok, but can we do better?
- $\implies~$ Ok, but can we do better?
- ⇒ Too slow for high-dimensional data
- ⇒ Too slow for high-dimensional data

Methods

- Mode / mean / median
- k Nearest Neighbors (kNN)
- Singular Value Decomposition (SVD)
- Multiple Imputation by Chained Equations (MICE)
- MissForest
- Denoising Autoencoders (SCDA)

- \implies Poor performance
- $\implies~$ Ok, but can we do better?
- $\implies~$ Ok, but can we do better?
- ⇒ Too slow for high-dimensional data
- ⇒ Too slow for high-dimensional data
- \implies Require complete data for training

Example: Single Nucleotide Polymorphisms (SNP)

Copyright: Scientific DX GmbH, 2020

- Categorical: 0 (dominant-dominant), 1 (dominant-mutant), 2 (mutant-mutant)
- High-dimensional $(10^5 10^6)$ and low-sampled $(10^2 10^3)$
- Ordering is important
- Missing values occur due to external mechanisms MCAR

Example: Single Nucleotide Polymorphisms (SNP)

Copyright: Scientific DX GmbH, 2020

- Categorical: 0 (dominant-dominant), 1 (dominant-mutant), 2 (mutant-mutant)
- High-dimensional $(10^5 10^6)$ and low-sampled $(10^2 10^3)$
- Ordering is important
- Missing values occur due to external mechanisms \implies MCAR

Methods:

- reference-based (state-of-the-art for human data)
- reference-free (when reference panels are not available).

Example: Single Nucleotide Polymorphisms (SNP)

Copyright: Scientific DX GmbH, 2020

- Categorical: 0 (dominant-dominant), 1 (dominant-mutant), 2 (mutant-mutant)
- High-dimensional $(10^5 10^6)$ and low-sampled $(10^2 10^3)$
- Ordering is important
- Missing values occur due to external mechanisms \implies MCAR

Methods:

- reference-based (state-of-the-art for human data)
- reference-free (when reference panels are not available).

Other possible examples: gene expression arrays, classification problems in astronomy, tool development for finance data, and weather prediction.

Why to use multi-label methods?

- fewer parameters than neural networks (good for low-sampled data)
- no need for hidden layers

Why to use multi-label methods?

- fewer parameters than neural networks (good for low-sampled data)
- no need for hidden layers

Which methods?

- Decision Trees, <u>Random Forests</u>
- Classifier Chains, Multilabel k Nearest Neighbours, Random k-Labelsets, Conditional Dependency Networks, etc.

Why to use multi-label methods?

- fewer parameters than neural networks (good for low-sampled data)
- no need for hidden layers

Which methods?

- Decision Trees, <u>Random Forests</u>
- Classifier Chains, Multilabel k Nearest Neighbours, Random k-Labelsets, Conditional Dependency Networks, etc.

BUT... Still need complete data for training

Chains of Autoreplicative Random Forests

- One window of size Δ = training part with complete data + testing part with missing values
- Chain of windows: on each step, stacking ν windows with already imputed values as additional features
- Ensemble of chains: one forward chain, one backward chain, several random chains

Gridsearch for parameters Δ and ν

Lighter color / higher accuracy

 Δ : as expected, bigger fraction of missing values \rightarrow smaller size of window \implies can be estimated theoretically, no need for search ν : may be different

Accuracy

	0.01	0.05	0.1	0.2	0.3	0.01	0.05	0.1	0.2	0.3
Maize				Eucalyptus						
	$ A = 15^{*}$	$A = 15^{*}$	$A = 10^{*}$	$A = 5^{*}$	$\Delta = 5^*$	$\Delta = 10^{*}$	$A = 5^{*}$	$A = 5^{*}$	$A = 3^{*}$	$\Delta = 2$
ChARF	$\nu = 1^*$	$\nu = 1^*$	$\nu = 1^*$	$\bar{\nu} = 1^{*}$	$\bar{\nu} = 1^{*}$	$\nu = 5^{*}$	$\nu = 10^*$	$\nu = 10^{*}$	$\nu = 10^*$	$\nu = 1$
	0.952	0.935	0.916	0.882	0.845	0.970	0.950	0.926	0.866	0.81
kNN (5/10)	0.803	0.802	0.801	0.798	0.794	0.851	0.849	0.847	0.843	0.83
mode	0.727	0.727	0.726	0.727	0.726	0.725	0.732	0.731	0.730	0.72
SVD (50/500)	0.647	0.648	0.645	0.643	0.636	0.788	0.788	0.788	0.785	0.78
MICE	- 1	-	-	-	-	-	-	-	-	-
missForest	0.662	0.650	0.622	0.593	0.580	0.684	0.673	0.626	0.564	0.52
	Colorado Beetle				Arabica Coffee					
	$ \Delta = 10^{*}$	$\Delta = 10^*$	$\Delta = 5^*$	$\Delta = 5^*$	$\Delta = 3^*$	$\Delta = 15^{*}$	$\Delta = 10^*$	$\Delta = 5^*$	$\Delta = 3^*$	$\Delta =$
ChARF	$\nu = 1^*$	$\nu = 1^{*}$	$\nu = 1^{*}$	$\nu = 1^{*}$	$\nu = 1^{*}$	$\nu = 3^{*}$	$\nu = 3^{*}$	$\nu = 5^{*}$	$\nu = 10^{*}$	$\nu =$
	0.835	0.824	0.818	0.805	0.792	0.897	0.886	0.878	0.866	0.85
kNN (50/10)	0.765	0.763	0.765	0.765	0.764	0.867	0.866	0.866	0.865	0.86
mode	0.761	0.760	0.762	0.761	0.761	0.807	0.804	0.805	0.805	0.80
SVD (50/100)	0.740	0.737	0.737	0.735	0.734	0.693	0.694	0.696	0.692	0.69
MICE	-	-	-	-	-	0.757	0.741	0.724	0.689	0.66
missForest	0.352	0.349	0.361	0.326	0.335	0.497	0.480	0.533	0.541	0.58
Wheat				Coffea Canephora						
	$ \Delta = 8^*$	$\Delta = 5^*$	$\Delta = 5^*$	$\Delta = 3^*$	$\Delta = 3^*$	$\Delta = 10^{*}$	$\Delta = 10^*$	$\Delta = 5^*$	$\Delta = 5^*$	$\Delta =$
ChARF	$ \nu = 10^*$	$\nu = 10^{*}$	$\nu = 10^{*}$	$\nu = 10^{*}$	$\nu = 10^{*}$	$\nu = 1^*$	$\nu = 1^{*}$	$\nu = 1^*$	$\nu = 1^{*}$	$\nu =$
	0.821	0.808	0.795	0.777	0.762	0.799	0.781	0.761	0.731	0.71
kNN (10/10)	0.823	0.819	0.818	0.815	0.811	0.737	0.739	0.737	0.734	0.73
mode	0.729	0.727	0.729	0.729	0.727	0.691	0.693	0.692	0.692	0.69
SVD (200/50)	0.622	0.618	0.609	0.600	0.594	0.456	0.453	0.450	0.449	0.45
MICE	0.641	0.635	0.621	0.585	0.545	-	-	-	-	-
missForest	0.614	0.736	0.746	0.756	0.755	0.377	0.449	0.442	0.395	0.3/

- MICE: run with 10 neighbors for each feature, still worked only for smaller data
- MissForest: run for first 100 features only
- SCDA: not taken into comparison (no complete data for training)

Time complexity

In theory:

kNN	SVD	MICE(dt)	MICE(rf)	ChARF
$\mathcal{O}(p)$	$\mathcal{O}(p)$	$\mathcal{O}(p^2)$	$\mathcal{O}(p\sqrt{p})$	$\mathcal{O}(\frac{p}{\Delta} \cdot \Delta)$

Time complexity

In theory:

kNN	SVD	MICE(dt)	MICE(rf)	ChARF
$\mathcal{O}(p)$	$\mathcal{O}(p)$	$\mathcal{O}(p^2)$	$\mathcal{O}(p\sqrt{p})$	$\mathcal{O}(\frac{p}{\Delta} \cdot \Delta)$

In practice:

Eucalyptus dataset, first 10, 20, ..., 500 features

- Unusual and effective usage of multi-label methods, e.g. Random Forests:
 - \cdot autoreplication
 - $\cdot\,$ missing value imputation
 - \cdot denoising
 - $\cdot \,$ outlier detection

- Unusual and effective usage of multi-label methods, e.g. Random Forests:
 - \cdot autoreplication
 - $\cdot\,$ missing value imputation
 - \cdot denoising
 - $\cdot \,$ outlier detection
- ChARF is an effective method for missing value imputation in high-dimensional data
 - $\cdot\,$ lower time complexity \implies works for high-dimensional datasets
 - $\cdot\,$ no need for complete data

- Studies for MAR and MNAR scenarios
- Regression (e.g. gene expression)
- Iterative approach (see MICE/missForest) + Autoreplicative Random Forests
- Probabilistic interpretation

Thank you!