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Why to impute missing data?
e Most off-the-shelf statistical and machine learning methods cannot handle
missing values

e Considering only instances with complete information can lead to a loss of
necessary information and can yield a very poor or even empty dataset

e Missing data itself might be of interest



Types of missingness

e Missing Completely at Random (MCAR)

The absence occurs entirely independently from feature values

e Missing at Random (MAR)

The absence depends only on the observed feature values

e Missing Not at Random (MNAR)

The absence depends on both observed and the unobserved feature values
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e Multiple Imputation by Chained = Too slow for high-dimensional
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e MissForest —> Too slow for high-dimensional

data



Methods

Mode / mean / median
k Nearest Neighbors (kNN)

Singular Value Decomposition
(SVD)

Multiple Imputation by Chained
Equations (MICE)

MissForest

Denoising Autoencoders (SCDA)

Ll

Imputation methods

Limitations

Poor performance
Ok, but can we do better?

Ok, but can we do better?

Too slow for high-dimensional
data

Too slow for high-dimensional
data

Require complete data for training
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e Categorical: 0 (dominant-dominant), 1 (dominant-mutant), 2 (mutant-mutant)
e High-dimensional (10° — 10°) and low-sampled (102 — 10%)
e Ordering is important

e Missing values occur due to external mechanisms — MCAR

Methods:

e reference-based (state-of-the-art for human data)
e reference-free (when reference panels are not available).

Other possible examples: gene expression arrays, classification problems in astronomy,
tool development for finance data, and weather prediction.
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Why to use multi-label methods?

e fewer parameters than neural networks (good for low-sampled data)

e no need for hidden layers
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Why to use multi-label methods?

e fewer parameters than neural networks (good for low-sampled data)

e no need for hidden layers

Which methods?

e Decision Trees, Random Forests

e Classifier Chains, Multilabel k Nearest Neighbours, Random k-Labelsets,
Conditional Dependency Networks, etc.

BUT... Still need complete data for training



Chains of Autoreplicative Random Forests

e One window of size A =
training part with complete
data + testing part with
missing values

e Chain of windows: on each
step, stacking v windows

with already imputed values

as additional features

e Ensemble of chains: one

forward chain, one backward

chain, several random chains




Gridsearch for parameters A and v
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Lighter color / higher accuracy

A: as expected, bigger fraction of missing values — smaller size of
window = can be estimated theoretically, no need for search

v: may be different



Accuracy
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| Maize

Eucalyptus

A =15% A=15* A=10* A=5*

A=5*Aa=10*

A=5" A=5" A=3% A=3*

ChARF v=1* v=1% v=1* v=1* v=1%|v=5% »v=10" v=10* v = 10* v = 10*
0.952 0.935 0.916 0.882 0.845 | 0.970 0.950 0.926 0.866 0.810
kNN (5/10) | 0.803  0.802  0.801  0.798 0.794 | 0.851  0.849  0.847 0.843 0.839
mode 0.727  0.727  0.726  0.727  0.726 | 0.725  0.732  0.731  0.730  0.729
SVD (50/500)| 0.647  0.648  0.645  0.643  0.636 | 0.788  0.788  0.788 0.785  0.780
MICE - - - - - - - - - -
missForest | 0.662  0.650  0.622  0.593 0.580 | 0.684  0.673  0.626 0.564  0.521
| Colorado Beetle Arabica Coffee
A=10" A=10" A=5" A=5" A=3"|A=15" A=10" A=5" A=3" A=3"
ChARF v=1% v=1% v=1% v=1% v=1% | v=3% v =3% v=5% v=10% v=3%
0.835 0.824 0.818 0.805 0.792 | 0.897 0.886 0.878 0.866 0.854
kNN (50/10) | 0.765  0.763  0.765  0.765 0.764 | 0.867  0.866  0.866 0.865 0.864
mode 0.761  0.760  0.762  0.761  0.761 | 0.807  0.804  0.805 0.805  0.804
SVD (50/100)| 0.740  0.737  0.737  0.735 0.734 | 0.693  0.694  0.696  0.692  0.690
MICE 0.757  0.741  0.724  0.689  0.664
missForest | 0.352  0.349  0.361  0.326  0.335 | 0.497  0.480  0.533  0.541  0.586
| ‘Wheat Coffea Canephora
A=5% A=5* A=3% A=3*
ChARF v =10% v =10% v =10% v = 10*
0.808  0.795  0.777  0.762
kNN (10/10) | 0.823 0.819  0.818 0.815 0.811
mode 0.720  0.727  0.720  0.729  0.727
SVD (200/50)| 0.622  0.618  0.609  0.600  0.594
MICE 0.641  0.635  0.621  0.585  0.545
missForest | 0.614  0.736  0.746  0.756  0.755

e MICE: run with 10 neighbors for each feature, still worked only for smaller data

e MissForest: run for first 100 features

only

e SCDA: not taken into comparison (no complete data for training)



Time complexity

In theory:

kNN SVD MICE(dt) MICE(rf)  ChARF
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Time complexity

In theory:
kNN  SVD MICE(dt) MICE(rf)  ChARF
O(p) O(p)  OF*)  O(pyp) O(F-D)
In practice:
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Eucalyptus dataset, first 10, 20, ..., 500 features
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Conclusions

e Unusual and effective usage of multi-label methods, e.g. Random
Forests:

- autoreplication

- missing value imputation
- denoising

- outlier detection
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Conclusions

e Unusual and effective usage of multi-label methods, e.g. Random
Forests:
- autoreplication
- missing value imputation
- denoising
- outlier detection
e ChARF is an effective method for missing value imputation in
high-dimensional data
- lower time complexity = works for high-dimensional datasets
- no need for complete data
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Studies for MAR and MNAR scenarios

e Regression (e.g. gene expression)

Iterative approach (see MICE/missForest) + Autoreplicative
Random Forests

Probabilistic interpretation
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Thank you!



