# Multi-output machine learning with applications to genomics 

Institut Imagine

Ekaterina Antonenko
May 26, 2023
Laboratoire d'informatique, École Polytechnique, IP Paris


## Table of contents

About me

Introduction: Multi-output prediction

Regression: some problems

Classification: missing value imputation

About me

## About me

## Education

```
since 2020 PhD candidate: École Polytechnique
    Data Science and Mining (DaSciM) team, Laboratoire d'informatique
    (LIX), CIFRE with Digitalent, Scientific advisor: Jesse Read
2012-2014 2-year program: Moscow Bioinformatics School
2009-2014 Diploma in Mathematics: Moscow State University
```


## Employment

since 2020 École Polytechnique: Researcher, Teaching assistant (Machine learning bachelor course)

2017-2019 Math instructor, New York, USA
2013-2016 Analyst, Moscow, Russia

## About me

## Keywords

Multi-output prediction; Missing value imputation; Explainability and interpretability; Tree methods; Probabilisctical inference.

## Papers

pre-print E. Antonenko, R. Beigaitė, M. Mechenich, J. Read and I. Žliobaitè, Backward inference in probabilistic Regressor Chains with distributional constraints.
pre-print E. Antonenko, A.Carreño, J. Read, Autoreplicative Random Forests for missing value imputation.
pre-print M. Konnova, E. Antonenko, J. Read, Missing value imputation for genomics data using a Sequence Based Generative Adversarial Network (SBGAN).
ECML 2022 E. Antonenko, J. Read, Chains of Autoreplicative Random Forests for missing value imputation in high-dimensional datasets, [Best paper award].
IDA 2022 E. Antonenko, J. Read, Multi-modal ensembles of regressor chains for multi-output prediction, Advances in Intelligent Data Analysis XXI - 21st International Symposium.
PeerJ 2016 V. Ivanenko, E. Antonenko, M. Gelfand, J. Yager, F. Ferrari, Changes in segmentation and setation along the anterior/posterior axis of the homonomous trunk limbs of a remipede (Crustacea, Arthropoda).

## Introduction: Multi-output prediction

## Definition of a multi-output problem

Given: Dataset $\mathcal{D}=\left\{\left(\boldsymbol{x}^{i}, \boldsymbol{y}^{i}\right)\right\}_{i=1}^{N}$ of $N$ samples:

- features $\boldsymbol{x}^{i}=\left[x_{1}^{i}, \ldots, x_{M}^{i}\right]$
- outputs $\boldsymbol{y}^{i}=\left[y_{1}^{i}, \ldots, y_{l}^{i}\right]$

Goal: Model $f(\boldsymbol{X})=\boldsymbol{y}$ which outputs predictions $\hat{\boldsymbol{y}}^{i}=\left[\hat{y}_{1}^{i}, \ldots, \hat{y}_{L}^{i}\right]$ having $\mathcal{D}$ observed.

## Definition of a multi-output problem

Given: Dataset $\mathcal{D}=\left\{\left(\boldsymbol{x}^{i}, \boldsymbol{y}^{i}\right)\right\}_{i=1}^{N}$ of $N$ samples:

- features $x^{i}=\left[x_{1}^{i}, \ldots, x_{M}^{i}\right]$
- outputs $\boldsymbol{y}^{i}=\left[y_{1}^{i}, \ldots, y_{l}^{i}\right]$

Goal: Model $f(\boldsymbol{X})=\boldsymbol{y}$ which outputs predictions $\hat{\boldsymbol{y}}^{i}=\left[\hat{y}_{1}^{i}, \ldots, \hat{y}_{L}^{i}\right]$ having $\mathcal{D}$ observed.

## Example:



|  | X |  |  | $8^{0+4}$ | $2 e^{-e^{-i x}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | - | 12,44 | 127,4 | 151 | 294,5 |
| B | . | 9,44 | 137,6 | 156 | 328 |
| C | . | 10,44 | 128,6 | 157 | 377 |
| D | + | 6,13 | 125,6 | 150 | 305,5 |
| E | , | 6,15 | 139 | 156 | 325 |
| F | + | ? | ? | ? | ? |

## Definition of a multi-output problem

Given: Dataset $\mathcal{D}=\left\{\left(\boldsymbol{x}^{i}, \boldsymbol{y}^{i}\right)\right\}_{i=1}^{N}$ of $N$ samples:

- features $x^{i}=\left[x_{1}^{i}, \ldots, x_{M}^{i}\right]$
- outputs $\boldsymbol{y}^{i}=\left[y_{1}^{i}, \ldots, y_{l}^{i}\right]$

Goal: Model $f(\boldsymbol{X})=\boldsymbol{y}$ which outputs predictions $\hat{\boldsymbol{y}}^{i}=\left[\hat{y}_{1}^{i}, \ldots, \hat{y}_{L}^{i}\right]$ having $\mathcal{D}$ observed.

## Example:



|  | X |  | $22^{600^{* 6}}$ | $80^{\text {dt }}$ | $22^{-60^{-e^{x}}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A |  | 12,44 | 127,4 | 151 | 294,5 |
| B |  | 9,44 | 137,6 | 156 | 328 |
| C |  | 10,44 | 128,6 | 157 | 377 |
| D | $\cdots$ | 6,13 | 125,6 | 150 | 305,5 |
| E | $\cdots$ | 6,15 | 139 | 156 | 325 |
| F | . | ? | ? | ? | ? |

Idea: to model these labels together in order to get better prediction performance

## Some approaches to multi-output problems

- Independent models

$$
\hat{\boldsymbol{y}}=\left[\hat{y}_{1}, \ldots, \hat{y}_{L}\right]=\left[h_{1}(x), \ldots, h_{L}(x)\right]
$$



## Some approaches to multi-output problems

- Independent models

$$
\hat{\boldsymbol{y}}=\left[\hat{y}_{1}, \ldots, \hat{y}_{L}\right]=\left[h_{1}(x), \ldots, h_{L}(x)\right]
$$



- Fully-cascaded chain
$\hat{\boldsymbol{y}}=\left[\hat{y}_{1}, \ldots, \hat{y}_{L}\right]=\left[h_{1}(x), h_{2}\left(x, \hat{y}_{1}\right), \ldots, h_{L}\left(x, \hat{y}_{1}, \ldots, \hat{y}_{L-1}\right)\right]$
$h_{1}, \ldots, h_{L}=$ any single-output models



## Some approaches to multi-output problems

- Independent models

$$
\hat{\boldsymbol{y}}=\left[\hat{y}_{1}, \ldots, \hat{y}_{L}\right]=\left[h_{1}(x), \ldots, h_{L}(x)\right]
$$



- Fully-cascaded chain
(x)
$\hat{\boldsymbol{y}}=\left[\hat{y}_{1}, \ldots, \hat{y}_{L}\right]=\left[h_{1}(x), h_{2}\left(x, \hat{y}_{1}\right), \ldots, h_{L}\left(x, \hat{y}_{1}, \ldots, \hat{y}_{L-1}\right)\right]$
$h_{1}, \ldots, h_{L}=$ any single-output models


|  | $\mathbf{X}$ | $y_{1}$ | $y_{2}$ | $y_{3}$ | $y_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F | $\cdots$ | 12,32 | $?$ | $?$ | $?$ |

## Some approaches to multi-output problems

- Independent models

$$
\hat{\boldsymbol{y}}=\left[\hat{y}_{1}, \ldots, \hat{y}_{L}\right]=\left[h_{1}(x), \ldots, h_{L}(x)\right]
$$



- Fully-cascaded chain

$\hat{\boldsymbol{y}}=\left[\hat{y}_{1}, \ldots, \hat{y}_{L}\right]=\left[h_{1}(x), h_{2}\left(x, \hat{y}_{1}\right), \ldots, h_{L}\left(x, \hat{y}_{1}, \ldots, \hat{y}_{L-1}\right)\right]$
$h_{1}, \ldots, h_{L}=$ any single-output models


|  | $\mathbf{X}$ | $y_{1}$ | $y_{2}$ | $y_{3}$ | $y_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F | $\cdots$ | 12,32 | 125,1 | $?$ | $?$ |

- Multi-output Decision Trees and Random Forests

$$
\hat{\boldsymbol{y}}=\left[\hat{y}_{1}, \ldots, \hat{y}_{L}\right]=[\boldsymbol{h}(x)]
$$

all labels are assigned simultaneously

## PICTURE

BUT the metric to optimize is still decomposable

## Some approaches to multi-output problems

- Independent models

$$
\hat{\boldsymbol{y}}=\left[\hat{y}_{1}, \ldots, \hat{y}_{L}\right]=\left[h_{1}(x), \ldots, h_{L}(x)\right]
$$



- Fully-cascaded chain

$\hat{\boldsymbol{y}}=\left[\hat{y}_{1}, \ldots, \hat{y}_{L}\right]=\left[h_{1}(x), h_{2}\left(x, \hat{y}_{1}\right), \ldots, h_{L}\left(x, \hat{y}_{1}, \ldots, \hat{y}_{L-1}\right)\right]$
$h_{1}, \ldots, h_{L}=$ any single-output models


|  | $\mathbf{X}$ | $y_{1}$ | $y_{2}$ | $y_{3}$ | $y_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F | $\cdots$ | 12,32 | 125,1 | 143 | $?$ |

- Multi-output Decision Trees and Random Forests

$$
\hat{\boldsymbol{y}}=\left[\hat{y}_{1}, \ldots, \hat{y}_{L}\right]=[\boldsymbol{h}(x)]
$$

all labels are assigned simultaneously
PICTURE
BUT the metric to optimize is still decomposable

## Some approaches to multi-output problems

- Independent models

$$
\hat{\boldsymbol{y}}=\left[\hat{y}_{1}, \ldots, \hat{y}_{L}\right]=\left[h_{1}(x), \ldots, h_{L}(x)\right]
$$



- Fully-cascaded chain

$\hat{\boldsymbol{y}}=\left[\hat{y}_{1}, \ldots, \hat{y}_{L}\right]=\left[h_{1}(x), h_{2}\left(x, \hat{y}_{1}\right), \ldots, h_{L}\left(x, \hat{y}_{1}, \ldots, \hat{y}_{L-1}\right)\right]$
$h_{1}, \ldots, h_{L}=$ any single-output models


|  | $\mathbf{X}$ | $y_{1}$ | $y_{2}$ | $y_{3}$ | $y_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F | $\cdots$ | 12,32 | 125,1 | 143 | 289,3 |

- Multi-output Decision Trees and Random Forests

$$
\hat{\boldsymbol{y}}=\left[\hat{y}_{1}, \ldots, \hat{y}_{L}\right]=[\boldsymbol{h}(x)]
$$

all labels are assigned simultaneously

## PICTURE

BUT the metric to optimize is still decomposable

## Regression: some problems

## Problem 1. Multi-modal distributions

Multi-output models may not work well for multi-modal distributions.
One possible reason: inadequate choice of the loss function.
Most models optimize MSE $=\frac{1}{N} \sum_{j=1}^{N}\left(\boldsymbol{y}_{j}-\hat{\boldsymbol{y}}_{j}\right)^{2}$.



Optimizing MSE does not help to exploit the dependencies between the targets.

## Problem 1. Solution

## Uniform Cost Function (UCF) is an

 analogue of $0 / 1$ loss for regression.$$
\operatorname{UCF}(\delta)=\frac{1}{N} \sum_{i=1}^{N}\left\{\begin{array}{l}
0 \text { if }\left\|\boldsymbol{y}^{i}-\hat{\boldsymbol{y}}^{i}\right\|_{2}<\frac{\delta}{2}, \\
1 \text { otherwise }
\end{array}\right.
$$

Correntropy is a smooth version of UCF. FORMULA


## Problem 1. Solution

## Uniform Cost Function (UCF) is an

 analogue of $0 / 1$ loss for regression.$$
\operatorname{UCF}(\delta)=\frac{1}{N} \sum_{i=1}^{N}\left\{\begin{array}{l}
0 \text { if }\left\|\boldsymbol{y}^{\boldsymbol{i}}-\hat{\boldsymbol{y}}^{i}\right\|_{2}<\frac{\delta}{2}, \\
1 \text { otherwise }
\end{array}\right.
$$

Correntropy is a smooth version of UCF. FORMULA


Goal $=$ challenge: optimize UCF or correntropy in Regressor Chains with any base estimator.

## Problem 1. Solution

## Uniform Cost Function (UCF) is an

 analogue of $0 / 1$ loss for regression.$$
\operatorname{UCF}(\delta)=\frac{1}{N} \sum_{i=1}^{N}\left\{\begin{array}{l}
0 \text { if }\left\|\boldsymbol{y}^{\boldsymbol{i}}-\hat{\boldsymbol{y}}^{i}\right\|_{2}<\frac{\delta}{2}, \\
1 \text { otherwise }
\end{array}\right.
$$

Correntropy is a smooth version of UCF. FORMULA


Goal $=$ challenge: optimize UCF or correntropy in Regressor Chains with any base estimator.

## Problem 2. Backward inference in Regressor Chains

## Problem 2. Solution

## Classification: missing value imputation

## Missing data

Why is data missing?

- Errors in sensors
- Human factor (reluctance to answer particular questions)
- Combining different studies
- ...


## Missing data

Why is data missing?

- Errors in sensors
- Human factor (reluctance to answer particular questions)
- Combining different studies

Why to impute the missing data?

- Most off-the-shelf statistical and machine learning methods cannot handle missing values
- Considering only instances with complete information can lead to a loss of necessary information and can yield a very poor or even empty dataset
- Missing data itself might be of interest


## Missing data

Why is data missing?

- Errors in sensors
- Human factor (reluctance to answer particular questions)
- Combining different studies
- ...

Why to impute the missing data?

- Most off-the-shelf statistical and machine learning methods cannot handle missing values
- Considering only instances with complete information can lead to a loss of necessary information and can yield a very poor or even empty dataset
- Missing data itself might be of interest


## Types of missingness

- Missing Completely at Random (MCAR): entirely independently of feature values
- Missing at Random (MAR): depends only on the observed feature values
- Missing Not at Random (MNAR): depends on both the observed and the unobserved feature values


## Procedural and Iterative Imputation

## Procedural

One procedure:

- Train a model on complete instances
- Use the fitted model to predict on instances containing missing values
- Correct observed values if changed



## Procedural and Iterative Imputation

## Procedural

One procedure:

- Train a model on complete instances
- Use the fitted model to predict on instances containing missing values
- Correct observed values if changed


Examples: mode, kNN, PCA,
Autoencoders

## Procedural and Iterative Imputation

## Procedural

One procedure:

- Train a model on complete instances
- Use the fitted model to predict on instances containing missing values
- Correct observed values if changed



## Iterative

Impute randomly, then repeat:

- Train a model on previous imputation
- Use the fitted model to predict on all instances
- Correct observed values if changed

Missing Dataset $\longrightarrow$ Randomly $\longrightarrow$ Imputed Dataset


Examples: mode, kNN, PCA, Autoencoders

## Procedural and Iterative Imputation

## Procedural

One procedure:

- Train a model on complete instances
- Use the fitted model to predict on instances containing missing values
- Correct observed values if changed


Examples: mode, kNN, PCA, Autoencoders

## Iterative

Impute randomly, then repeat:

- Train a model on previous imputation
- Use the fitted model to predict on all instances
- Correct observed values if changed

Missing Dataset $\longrightarrow$ Randomly $\longrightarrow$ Imputed Dataset


Examples: MICE, MissForest, PCA, Autoencoders

## Procedural and Iterative Imputation

## Procedural

One procedure:

- Train a model on complete instances
- Use the fitted model to predict on instances containing missing values
- Correct observed values if changed


Examples: mode, kNN, PCA, Autoencoders

## Iterative

Impute randomly, then repeat:

- Train a model on previous imputation
- Use the fitted model to predict on all instances
- Correct observed values if changed

Missing Dataset $\longrightarrow$ Randomly $\longrightarrow$ Imputed Dataset


Examples: MICE, MissForest, PCA, Autoencoders

## Autoencoders $\Longrightarrow$ Autoreplicative Random Forests



Autoencoder


Denoising Autoencoder

## Autoencoders $\Longrightarrow$ Autoreplicative Random Forests



Autoencoder


Denoising Autoencoder


Autoreplicator

## Autoencoders $\Longrightarrow$ Autoreplicative Random Forests



Autoencoder


Denoising Autoencoder


Autoreplicator

Why to use multi-label methods?

- compared to one-by-one methods: may deeper exploit interdependencies between the targets + less computationally expensive
- compared to neural networks: fewer parameters (good for low-sampled data)
- no need for hidden layers


## Autoencoders $\Longrightarrow$ Autoreplicative Random Forests



Autoencoder


Denoising Autoencoder


Autoreplicator

Why to use multi-label methods?

- compared to one-by-one methods: may deeper exploit interdependencies between the targets + less computationally expensive
- compared to neural networks: fewer parameters (good for low-sampled data)
- no need for hidden layers

Which methods?

- Decision Trees, Random Forests, Extra Trees
- Classifier Chains, Multilabel k Nearest Neighbours, Random k-Labelsets, Conditional Dependency Networks, etc.


## Results: iterative ARF do converge

Imputation via Iterative Random Forests converges after several iterations



## Accuracy of imputation

| MVR | 0.01 | 0.05 | 0.1 | 0.2 | 0.3 | 0.01 | 0.05 | 0.1 | 0.2 | 0.3 | 0.01 | 0.05 | 0.1 | 0.2 | 0.3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mushroom [8,124 $\times 22$ ] |  |  |  |  | Soybean [307 $\times$ 35] |  |  |  |  | Tumor [339 $\times 17$ ] |  |  |  |  |
| Complete cases | 80.1\% | 32.3\% | 10.1\% | 0.7\% | 0.04\% | 69.7\% | 13.7\% | 1.0\% | 0\% | 0\% | \| 83.8\% | 38.9\% | 15.0\% | 1.2\% | 0.3\% |
| MICE | 0.658 | 0.715 | 0.741 | 0.769 | 0.777 | 0.884 | 0.884 | 0.879 | 0.867 | 0.850 | 0.761 | 0.768 | 0.748 | 0.754 | 0.735 |
| itARF | 0.730 | 0.740 | 0.747 | 0.734 | 0.707 | 0.824 | 0.850 | 0.832 | $\underline{0.815}$ | $\underline{0.789}$ | 0.652 | 0.672 | 0.645 | 0.660 | 0.620 |
| pARF | 0.748 | 0.774 | 0.761 | 0.671 | 0.478 | 0.804 | 0.779 | 0.600 | - | - | 0.639 | 0.696 | 0.650 | 0.694 | 0.635 |
| itAE | 0.608 | 0.618 | 0.604 | 0.584 | 0.569 | 0.653 | 0.607 | 0.608 | 0.584 | 0.590 | 0.721 | 0.732 | 0.692 | 0.711 | 0.710 |
| pAE | 0.580 | 0.494 | 0.491 | 0.538 | 0.428 | 0.653 | 0.622 | 0.594 | - | - | 0.721 | 0.718 | $\underline{0.692}$ | 0.690 | 0.497 |
| itPCA | 0.604 | 0.627 | 0.622 | 0.623 | 0.618 | 0.667 | 0.692 | 0.671 | 0.646 | 0.603 | 0.721 | 0.740 | $\underline{0.692}$ | 0.711 | 0.710 |
| pPCA | 0.600 | 0.587 | 0.578 | 0.537 | 0.441 | 0.655 | 0.639 | 0.620 | - | - | 0.721 | 0.671 | 0.688 | 0.626 | 0.411 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Votes [ $435 \times 16$ ] |  |  |  |  | Lymphography [148×18] |  |  |  |  | Financial Survey [ $6,394 \times 212$ ] |  |  |  |  |
| Complete cases | 85.3\% | 42.2\% | 18.5\% | 1.3\% | 0.4\% | 81.8\% | 40.5\% | 14.9\% | 2.7\% | 0\% | \| 11.8\% | 0\% | 0\% | 0\% | 0\% |
| MICE | 0.768 | 0.795 | 0.771 | 0.768 | 0.782 | 0.750 | 0.679 | 0.665 | 0.648 | 0.651 | - | - | - | - | - |
| itARF | 0.719 | 0.726 | 0.728 | 0.723 | 0.718 | 0.714 | 0.639 | $\underline{0.638}$ | 0.628 | $\underline{0.600}$ | 0.684 | 0.677 | 0.676 | 0.667 | 0.661 |
| pARF | $\underline{0.730}$ | 0.758 | 0.756 | 0.522 | 0.495 | 0.636 | 0.647 | 0.604 | 0.608 | - | 0.633 | - | - | - | - |
| itAE | 0.697 | 0.563 | $\overline{0.602}$ | 0.578 | 0.570 | 0.700 | 0.474 | 0.485 | 0.448 | 0.487 | 0.626 | 0.617 | 0.616 | 0.604 | 0.596 |
| pAE | 0.638 | 0.546 | 0.600 | 0.524 | 0.488 | 0.679 | 0.514 | 0.563 | 0.611 | - | 0.313 | - | - | - | - |
| itPCA | 0.665 | 0.583 | 0.567 | 0.572 | 0.570 | 0.686 | 0.513 | 0.477 | 0.468 | 0.484 | 0.653 | 0.645 | 0.645 | 0.634 | 0.627 |
| pPCA | 0.595 | 0.499 | 0.567 | 0.507 | 0.453 | 0.693 | 0.536 | 0.562 | 0.502 | - | 0.299 | - | - | - | - |

- Procedural ARFs: may be powerful when enough complete instances
- MICE: as powerful as computationally expensive
- Iterative ARFs: still powerful + significantly quicker


## Time complexity

## In theory:

- $p=$ number of features
- $n_{\text {iter }}=$ number of iterations

| itARF | pARF | MICE |
| :---: | :---: | :---: |
| $\mathcal{O}\left(n_{\text {iter }} \cdot p\right)$ | $\mathcal{O}(p)$ | $\mathcal{O}\left(n_{\text {iter }} \cdot p^{2}\right)$ |

## Time complexity

## In theory:

- $p=$ number of features
- $n_{\text {iter }}=$ number of iterations

| itARF | pARF | MICE |
| :---: | :---: | :---: |
| $\mathcal{O}\left(n_{\text {iter }} \cdot p\right)$ | $\mathcal{O}(p)$ | $\mathcal{O}\left(n_{\text {iter }} \cdot p^{2}\right)$ |

## In practice:



## Usecase: Single Nucleotide Polymorphisms (SNP)



Copyright: Scientific DX GmbH, 2020

- Categorical: 0 (dominant-dominant), 1 (dominant-mutant), 2 (mutant-mutant)
- High-dimensional $\left(10^{5}-10^{6}\right)$ and low-sampled $\left(10^{2}-10^{3}\right)$
- Ordering is important
- Missing values occur due to external mechanisms $\Longrightarrow$ MCAR


## Usecase: Single Nucleotide Polymorphisms (SNP)



Copyright: Scientific DX GmbH, 2020

- Categorical: 0 (dominant-dominant), 1 (dominant-mutant), 2 (mutant-mutant)
- High-dimensional $\left(10^{5}-10^{6}\right)$ and low-sampled $\left(10^{2}-10^{3}\right)$
- Ordering is important
- Missing values occur due to external mechanisms $\Longrightarrow$ MCAR

Methods:

- reference-based (state-of-the-art for human data)
- reference-free (when reference panels are not available)


## Chains of Autoreplicative Random Forests



- Procedural approach: one window of size $\Delta=$ complete instances + instances with missing values
- Chain of windows: on each step, stacking $\nu$ windows with already imputed values as additional features
- Ensemble of chains: one forward chain, one backward chain, several random chains


## Gridsearch for parameters $\triangle$ and $\nu$



$$
30 \%
$$


Lighter color / higher accuracy
$\Delta$ : bigger fraction of missing values $\rightarrow$ smaller size of window $\Longrightarrow$ can be estimated theoretically, no need for search $\nu$ : may depend on problem

## Accuracy

|  | 0.01 | 0.05 | 0.1 | 0.2 | 0.3 | 0.01 | 0.05 | 0.1 | 0.2 | 0.3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Maize [247 $\times 44,729]$ |  |  |  |  | Eucalyptus [970 $\times 33,398$ ] |  |  |  |  |
| ChARF | 0.952 | 0.935 | 0.916 | 0.882 | 0.845 | 0.970 | 0.950 | 0.926 | 0.866 | 0.810 |
| kNN (5/10) | 0.803 | 0.802 | 0.801 | 0.798 | 0.794 | 0.851 | 0.849 | 0.847 | 0.843 | 0.839 |
| mode | 0.727 | 0.727 | 0.726 | 0.727 | 0.726 | 0.725 | 0.732 | 0.731 | 0.730 | 0.729 |
| SVD (50/500) | 0.647 | 0.648 | 0.645 | 0.643 | 0.636 | 0.788 | 0.788 | 0.788 | 0.785 | 0.780 |
| MICE | - | - | - | - | - | - | - | - | - | - |


|  | Colorado Beetle [188 $\times 34,186$ ] |  |  |  |  | Arabica Coffee [596 $\times$ 4,666] |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ChARF | 0.835 | 0.824 | 0.818 | 0.805 | 0.792 | 0.897 | 0.886 | 0.878 | 0.866 | 0.854 |
| kNN (50/10) | 0.765 | 0.763 | 0.765 | 0.765 | 0.764 | 0.867 | 0.866 | 0.866 | 0.865 | 0.864 |
| mode | 0.761 | 0.760 | 0.762 | 0.761 | 0.761 | 0.807 | 0.804 | 0.805 | 0.805 | 0.804 |
| SVD (50/100) | 0.740 | 0.737 | 0.737 | 0.735 | 0.734 | 0.693 | 0.694 | 0.696 | 0.692 | 0.690 |
| MICE | - | - | - | - | - | 0.757 | 0.741 | 0.724 | 0.689 | 0.664 |



|  | Wheat [388 $\times 9,763$ ] |  |  |  |  | Coffea Canephora [119 $\times 45,748$ ] |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ChARF | 0.821 | 0.808 | 0.795 | 0.777 | 0.762 | 0.799 | 0.781 | 0.761 | 0.731 | 0.717 |
| kNN (10/10) | 0.823 | 0.819 | 0.818 | 0.815 | 0.811 | 0.737 | 0.739 | 0.737 | 0.734 | 0.731 |
| mode | 0.729 | 0.727 | 0.729 | 0.729 | 0.727 | 0.691 | 0.693 | 0.692 | 0.692 | 0.691 |
| SVD (200/50) | 0.622 | 0.618 | 0.609 | 0.600 | 0.594 | 0.456 | 0.453 | 0.450 | 0.449 | 0.450 |
| MICE | 0.641 | 0.635 | 0.621 | 0.585 | 0.545 | - | - | - | - | - |

- MICE: run with 10 neighbors for each feature, still worked only for smaller data
- Autoencoders: not taken into comparison (no complete data for training)
- Well-known methods for SNP imputation: $k$ Nearest Neighbors, Single Value Decomposition


## Conclusions

- Unusual and effective usage of multi-label methods, e.g. Random Forests:
- autoreplication
- missing value imputation
- denoising
- outlier detection


## Conclusions

- Unusual and effective usage of multi-label methods, e.g. Random Forests:
- autoreplication
- missing value imputation
- denoising
- outlier detection
- We show how probabilistic training can be easily added to the model


## Conclusions

- Unusual and effective usage of multi-label methods, e.g. Random Forests:
- autoreplication
- missing value imputation
- denoising
- outlier detection
- We show how probabilistic training can be easily added to the model
- ARF vs MICE: high quality and much faster


## Conclusions

- Unusual and effective usage of multi-label methods, e.g. Random Forests:
- autoreplication
- missing value imputation
- denoising
- outlier detection
- We show how probabilistic training can be easily added to the model
- ARF vs MICE: high quality and much faster
- ARF vs Autoencoders:
- no need for one-hot encoding $\Longrightarrow$ less features.
- lower time complexity $\Longrightarrow$ works for high-dimensional datasets
- no need for complete data


## Questions of interest

- Multi-target Random Forests still optimize decomposable metrics (entropy, gini):
can we model the labels indeed jointly?


## Questions of interest

- Multi-target Random Forests still optimize decomposable metrics (entropy, gini):
can we model the labels indeed jointly?
- For very wide datasets ( $>10,000$ features) multi-target methods are very memory expensive


## Questions of interest

- Multi-target Random Forests still optimize decomposable metrics (entropy, gini):
can we model the labels indeed jointly?
- For very wide datasets ( $>10,000$ features) multi-target methods are very memory expensive
- Studies for MAR and MNAR scenarios


## Questions of interest

- Multi-target Random Forests still optimize decomposable metrics (entropy, gini):
can we model the labels indeed jointly?
- For very wide datasets ( $>10,000$ features) multi-target methods are very memory expensive
- Studies for MAR and MNAR scenarios
- Regression (e.g. gene expression)


## Questions of interest

- Multi-target Random Forests still optimize decomposable metrics (entropy, gini):
can we model the labels indeed jointly?
- For very wide datasets ( $>10,000$ features) multi-target methods are very memory expensive
- Studies for MAR and MNAR scenarios
- Regression (e.g. gene expression)
- How can we avoid overfitting in Iterative RF?

Thank you!

