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Introduction: Multi-output
prediction



Definition of a multi-output problem

Given: Dataset D = {(x',y')}!, of N samples:

o features x' = [x{, ..., xjy]

o outputs ¥/ = [yi, ..., yi]
Goal: Model f(X) = y which outputs predictions ' = [§1, ..., §{] having
D observed.
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Idea: to model these labels together in order to get better prediction
performance
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Regression: some problems



Problem 1. Multi-modal distributions

Multi-output models may not work well for multi-modal distributions.
One possible reason: inadequate choice of the loss function.

Most models optimize MSE = & J-Nzl(yj - 9)>

10

Optimizing MSE does not help to exploit the dependencies between the
targets.



Problem 1. Solution

Uniform Cost Function (UCF) is an
analogue of 0/1 loss for regression. —— UCFscore 51
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Problem 2. Backward inference in Regressor Chains




Problem 2. Solution
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Classification: missing value
imputation




Missing data

Why is data missing?

e Errors in sensors

e Human factor (reluctance to answer particular questions)
e Combining different studies

°
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Missing data

Why is data missing?

e Errors in sensors

e Human factor (reluctance to answer particular questions)
e Combining different studies

°

Why to impute the missing data?

e Most off-the-shelf statistical and machine learning methods cannot handle
missing values

e Considering only instances with complete information can lead to a loss of
necessary information and can yield a very poor or even empty dataset

e Missing data itself might be of interest

Types of missingness

e Missing Completely at Random (MCAR): entirely independently of feature

values
e Missing at Random (MAR): depends only on the observed feature values
e Missing Not at Random (MNAR): depends on both the observed and the

unobserved feature values
11



Procedural and lterative Imputation

Procedural
One procedure:
e Train a model on complete instances

e Use the fitted model to predict on
instances containing missing values

e Correct observed values if changed

Missing Select complete
Dataset subset

Train Predict
model missing values

12



Procedural and lterative Imputation

Procedural
One procedure:
e Train a model on complete instances

e Use the fitted model to predict on
instances containing missing values

e Correct observed values if changed
Select complete
subset

Train Predict
model missing values

Examples: mode, kNN, PCA,
Autoencoders

Missing
Dataset

12



Procedural and lterative Imputation

Procedural Iterative
One procedure: Impute randomly, then repeat:
e Train a model on complete instances e Train a model on previous imputation
e Use the fitted model to predict on e Use the fitted model to predict on all
instances

instances containing missing values
e Correct observed values if changed

e Correct observed values if changed
Select complete
subset

Train Predict
model missing values

Examples: mode, kNN, PCA,

Missing Dataset —» Randomly — Imputed Dataset

Missing

Dataset

Predict the Repeat Learn
until convergence the model

missing values

Autoencoders

12



Procedural and lterative Imputation
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Repeat
the model

Predict the
until convergence

missing values

Examples: MICE, MissForest, PCA,

Autoencoders

12
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Autoencoders — Autoreplicative Random Forests

Autoencoder Denoising Autoencoder
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Autoencoders — Autoreplicative Random Forests

X ™ > CEB iz

Autoencoder

Denoising Autoencoder

(auto-replicator)

XL LTI s e o (T W Z

Autoreplicator
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Autoencoders — Autoreplicative Random Forests

H I e H decoder . reconstruction
m] XTI =
. (auto-replicator)
encoder XOOTIT
7N
XOTTT iy CCEC I Z XTI, “sase Tl Z LY, 2)

Autoencoder Denoising Autoencoder Autoreplicator

Why to use multi-label methods?

e compared to one-by-one methods: may deeper exploit interdependencies
between the targets + less computationally expensive

e compared to neural networks: fewer parameters (good for low-sampled data)

e no need for hidden layers
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Autoencoder Denoising Autoencoder Autoreplicator

Why to use multi-label methods?

e compared to one-by-one methods: may deeper exploit interdependencies
between the targets + less computationally expensive

e compared to neural networks: fewer parameters (good for low-sampled data)

e no need for hidden layers

Which methods?

e Decision Trees, Random Forests, Extra Trees
e Classifier Chains, Multilabel k Nearest Neighbours, Random k-Labelsets,
Conditional Dependency Networks, etc.
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Results: iterative ARF do converge

Imputation via Iterative Random Forests converges after several iterations

Mushrooms Votes

g gm
3 >
3os
0.01 M
F] 050
0.05 <
04 0.1 055
0.2
0 03 0s0

3
Iterations

0.01
0.05
0.1
0.2
0.3
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Accuracy of imputation

MVR | 001 005 01 02 03 |00l 005 01 02 03 ]001 005 01 02 03
Mushroom (8,124 x 22] Soybean [307 x 35] Tumor [339 x 17]
Complete cases | 80.1% 32.3% 10.1% 0.7% 0.04% |69.7% 13.7% 1.0% 0% 0% |83.8% 38.9% 15.0% 12% 0.3%
MICE 0.658 0.715 0.741 0.769 0.777 | 0.884 0.884 0.879 0.867 0.850 [ 0.761 0.768 0.748 0.754 0.735
itARF 0730 0.740 0.747 0.734 0.707 | 0.824 0.850 0.832 0.815 0.789 | 0.652 0.672 0.645 0.660 0.620
pARF 0.748 0.774 0.761 0.671 0.478 | 0.804 0.779 0.600 - - | 0639 0696 0650 0.694 0.635
itAE 0.608 0.618 0.604 0.584 0.569 | 0.653 0.607 0.608 0.584 0.590 | 0.721 0.732 0.692 0.711 0.710
pAE 0.580 0.494 0491 0538 0428 | 0.653 0.622 0594 - - |0721 0718 0692 0.690 0.497
itPCA 0.604 0.627 0.622 0.623 0.618 | 0.667 0.692 0.671 0.646 0.603 | 0.721 0.740 0.692 0.711 0.710
pPCA 0.600 0.587 0.578 0.537 0.441 | 0.655 0.639 0.620 - - | 0721 0671 0688 0.626 0.411

Votes [435 x 16] Lymphography [148 x 18] Financial Survey [6,394 x 212]
Complete cases | 85.3% 422% 18.5% 1.3% 0.4% |81.8% 405% 14.9% 27% 0% |118% 0% 0% 0% 0%

MICE 0.768 0.795 0.771 0.768 0.782 | 0.750 0.679 0.665 0.648 0.651| - - - - -
itARF 0719 0726 0.728 0.723 0.718 | 0.714 0.630 0.638 0.628 0.600 | 0.684 0.677 0.676 0.667 0.661
pARF 0730 0.758 0.756 0522 0.495 | 0.636 0.647 0.604 0.608 - |0633 - - - -
itAE 0.607 0.563 0.602 0.578 0.570 | 0.700 0.474 0.485 0.448 0.487 | 0.626 0.617 0.616 0.604 0.596
pAE 0.638 0.546 0.600 0.524 0.488 | 0.679 0.514 0.563 0.611 - |[0.313 - - - -
itPCA 0.665 0.583 0567 0.572 0570 | 0.686 0.513 0.477 0.468 0.484 | 0.653 0.645 0.645 0.634 0.627
pPCA 0.505 0.499 0.567 0.507 0.453 | 0.693 0.536 0.562 0.502 - |0.299 - - - -

e Procedural ARFs: may be powerful when enough complete instances
e MICE: as powerful as computationally expensive
e |terative ARFs: still powerful + significantly quicker
i1'5)



Time complexity

In theory:

- p = number of features
- Njter = number of iterations

itARF pARF MICE

O(niter - ) O(p)  O(niter - P?)
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Time complexity

In theory:

- p = number of features
- Njter = number of iterations

itARF pARF MICE

O(niter - ) O(p)  O(niter - P?)

In practice:

2

T » » o D @ 0w
Number of features
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Usecase: Single Nucleotide Polymorphisms (SNP)

SNP

® [l
@ {slle
@ [l

Copyright: Scientific DX GmbH, 2020

e Categorical: 0 (dominant-dominant), 1 (dominant-mutant), 2 (mutant-mutant)
e High-dimensional (10° — 10°) and low-sampled (102 — 10%)
e Ordering is important

e Missing values occur due to external mechanisms — MCAR
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SNP
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Copyright: Scientific DX GmbH, 2020

e Categorical: 0 (dominant-dominant), 1 (dominant-mutant), 2 (mutant-mutant)
e High-dimensional (10° — 10°) and low-sampled (102 — 10%)
e Ordering is important

e Missing values occur due to external mechanisms — MCAR

Methods:

e reference-based (state-of-the-art for human data)

e reference-free (when reference panels are not available)

17



Chains of Autoreplicative Random Forests

j:;ﬁ;‘;?:g ﬂlJ - e Procedural approach:
I:> one window of size A =

] [T complete instances +
instances with missing values

e Chain of windows:
on each step, stacking v

windows with already

imputed values as additional
features

e Ensemble of chains:

one forward chain, one

backward chain, several

random chains

18



Gridsearch for parameters A and v

20%

[T o o

s

om2 s 053 oo [
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a 2

o s a0 om o o o 0% os [0 o o o o o Y

o [080] 035 007 007 0t o [0 oo 05 oss om o 088 091 001 0ot
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Lighter color / higher accuracy

A: bigger fraction of missing values — smaller size of window —-
can be estimated theoretically, no need for search

v: may depend on problem

19



Accuracy

‘ 0.01  0.05 0.1 0.2 0.3 0.01  0.05 0.1 0.2 0.3

‘ Maize [247 x 44,729] Eucalyptus [970 x 33,398]
ChARF 0.952 0.935 0.916 0.882 0.845| 0.970 0.950 0.926 0.866 0.810
kNN (5/10) 0.803 0.802 0.801 0.798 0.794 | 0.851 0.849 0.847 0.843 0.839
mode 0.727 0.727 0.726 0.727 0.726 | 0.725 0.732 0.731 0.730 0.729
SVD (50/500) | 0.647 0.648 0.645 0.643 0.636 | 0.788 0.788 0.788 0.785 0.780
MICE = = = = = = = = = =
‘ Colorado Beetle [188 x 34,186] Arabica Coffee [596 x 4,666]
ChARF 0.835 0.824 0.818 0.805 0.792 | 0.897 0.886 0.878 0.866 0.854
kNN (50/10) | 0.765 0.763 0.765 0.765 0.764 | 0.867 0.866 0.866 0.865 0.864
mode 0.761 0.760 0.762 0.761 0.761 | 0.807 0.804 0.805 0.805 0.804
SVD (50/100) | 0.740 0.737 0.737 0.735 0.734 | 0.693 0.694 0.696 0.692 0.690
MICE = = = = = 0.757 0.741 0.724 0.689 0.664
‘ Wheat [388 x 9,763] Coffea Canephora [119 x 45,748]
ChARF 0.821 0.808 0.795 0.777 0.762 | 0.799 0.781 0.761 0.731 0.717
kNN (10/10) | 0.823 0.819 0.818 0.815 0.811 | 0.737 0.739 0.737 0.734 0.731
mode 0.729 0.727 0.729 0.729 0.727 | 0.691 0.693 0.692 0.692 0.691
SVD (200/50) | 0.622 0.618 0.609 0.600 0.594 | 0.456 0.453 0.450 0.449 0.450
MICE 0.641 0.635 0.621 0.585 0.545 = = = = -

e MICE: run with 10 neighbors for each feature, still worked only for smaller data

e Autoencoders: not taken into comparison (no complete data for training)

e Well-known methods for SNP imputation: k Nearest Neighbors, Single Value
Decomposition 20
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- autoreplication
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- outlier detection
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Conclusions

Unusual and effective usage of multi-label methods, e.g. Random
Forests:

- autoreplication

- missing value imputation
- denoising

- outlier detection

We show how probabilistic training can be easily added to the model
ARF vs MICE: high quality and much faster
ARF vs Autoencoders:

- no need for one-hot encoding = less features.
- lower time complexity = works for high-dimensional datasets

- no need for complete data

21



Questions of interest

e Multi-target Random Forests still optimize decomposable metrics

(entropy, gini):
can we model the labels indeed jointly?
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Questions of interest

e Multi-target Random Forests still optimize decomposable metrics

(entropy, gini):
can we model the labels indeed jointly?

e For very wide datasets (> 10,000 features) multi-target methods are
very memory expensive

e Studies for MAR and MNAR scenarios
e Regression (e.g. gene expression)

e How can we avoid overfitting in Iterative RF?

22



Thank you!
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