# Multi-output machine learning with applications to genomics

Institut Imagine

#### Ekaterina Antonenko

May 26, 2023

Laboratoire d'informatique, École Polytechnique, IP Paris



Introduction: Multi-output prediction

Regression: some problems

Classification: missing value imputation

#### Education

since 2020 PhD candidate: École Polytechnique Data Science and Mining (DaSciM) team, Laboratoire d'informatique (LIX), CIFRE with Digitalent, Scientific advisor: Jesse Read 2012–2014 2-year program: Moscow Bioinformatics School

2009-2014 Diploma in Mathematics: Moscow State University

#### Employment

- since 2020 École Polytechnique: Researcher, Teaching assistant (Machine learning bachelor course)
- 2017-2019 Math instructor, New York, USA
- 2013–2016 Analyst, Moscow, Russia

#### Keywords

Multi-output prediction; Missing value imputation; Explainability and interpretability; Tree methods; Probabilisctical inference.

#### Papers

- pre-print E. Antonenko, R. Beigaitė, M. Mechenich, J. Read and I. Žliobaitė, *Backward* inference in probabilistic Regressor Chains with distributional constraints.
- pre-print E. Antonenko, A.Carreño, J. Read, Autoreplicative Random Forests for missing value imputation.
- pre-print M. Konnova, E. Antonenko, J. Read, Missing value imputation for genomics data using a Sequence Based Generative Adversarial Network (SBGAN).
- ECML 2022 E. Antonenko, J. Read, *Chains of Autoreplicative Random Forests for missing value imputation in high-dimensional datasets*, [Best paper award].
  - IDA 2022 E. Antonenko, J. Read, Multi-modal ensembles of regressor chains for multi-output prediction, Advances in Intelligent Data Analysis XXI - 21st International Symposium.
- PeerJ 2016 V. Ivanenko, E. Antonenko, M. Gelfand, J. Yager, F. Ferrari, Changes in segmentation and setation along the anterior/posterior axis of the homonomous trunk limbs of a remipede (Crustacea, Arthropoda).

# Introduction: Multi-output prediction

## Definition of a multi-output problem

**Given:** Dataset  $\mathcal{D} = \{(\mathbf{x}^i, \mathbf{y}^i)\}_{i=1}^N$  of N samples:

- features  $\mathbf{x}^i = [x_1^i, ..., x_M^i]$
- outputs  $\mathbf{y}^i = [y_1^i, ..., y_L^i]$

**Goal:** Model  $f(\mathbf{X}) = \mathbf{y}$  which outputs predictions  $\hat{\mathbf{y}}^i = [\hat{y}_1^i, ..., \hat{y}_L^i]$  having  $\mathcal{D}$  observed.

## Definition of a multi-output problem

**Given:** Dataset  $\mathcal{D} = \{(\mathbf{x}^i, \mathbf{y}^i)\}_{i=1}^N$  of N samples:

- features  $\mathbf{x}^i = [x_1^i, ..., x_M^i]$
- outputs  $\mathbf{y}^i = [y_1^i, ..., y_L^i]$

**Goal:** Model  $f(\mathbf{X}) = \mathbf{y}$  which outputs predictions  $\hat{\mathbf{y}}^i = [\hat{y}_1^i, ..., \hat{y}_L^i]$  having  $\mathcal{D}$  observed.

#### Example:



|   | x | ASE   | Height | Body length | Weight |
|---|---|-------|--------|-------------|--------|
| A |   | 12,44 | 127,4  | 151         | 294,5  |
| В |   | 9,44  | 137,6  | 156         | 328    |
| C |   | 10,44 | 128,6  | 157         | 377    |
| D |   | 6,13  | 125,6  | 150         | 305,5  |
| E |   | 6,15  | 139    | 156         | 325    |
| F |   | ?     | ?      | ?           | ?      |

## Definition of a multi-output problem

**Given:** Dataset  $\mathcal{D} = \{(\mathbf{x}^i, \mathbf{y}^i)\}_{i=1}^N$  of N samples:

- features  $\mathbf{x}^i = [x_1^i, ..., x_M^i]$
- outputs  $\mathbf{y}^i = [y_1^i, ..., y_L^i]$

**Goal:** Model  $f(\mathbf{X}) = \mathbf{y}$  which outputs predictions  $\hat{\mathbf{y}}^i = [\hat{y}_1^i, ..., \hat{y}_L^i]$  having  $\mathcal{D}$  observed.

#### Example:



|   | x | 1-80 P | Height | Body length | Weight |
|---|---|--------|--------|-------------|--------|
| A |   | 12,44  | 127,4  | 151         | 294,5  |
| В |   | 9,44   | 137,6  | 156         | 328    |
| C |   | 10,44  | 128,6  | 157         | 377    |
| D |   | 6,13   | 125,6  | 150         | 305,5  |
| E |   | 6,15   | 139    | 156         | 325    |
| F |   | ?      | ?      | ?           | ?      |

**Idea:** to model these labels together in order to get better prediction performance

· Independent models

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), ..., h_L(\mathbf{x})]$$



· Independent models

- $\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), ..., h_L(\mathbf{x})]$
- · Fully-cascaded chain

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), h_2(\mathbf{x}, \hat{y}_1), ..., h_L(\mathbf{x}, \hat{y}_1, ..., \hat{y}_L)]$$

 $h_1, ..., h_L = any single-output models$ 



x

· Independent models

- $\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), ..., h_L(\mathbf{x})]$
- · Fully-cascaded chain

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), h_2(\mathbf{x}, \hat{y}_1), ..., h_L(\mathbf{x}, \hat{y}_1, ..., \hat{y}_{L-1})$$

 $h_1, ..., h_L = any single-output models$ 

|   | Х | <i>y</i> 1 | У2 | У3 | У4 |
|---|---|------------|----|----|----|
| F |   | 12,32      | ?  | ?  | ?  |





· Independent models

- $\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), ..., h_L(\mathbf{x})]$
- · Fully-cascaded chain

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), h_2(\mathbf{x}, \hat{y}_1), ..., h_L(\mathbf{x}, \hat{y}_1, ..., \hat{y}_{L-1})]$$

 $h_1, ..., h_L = any single-output models$ 



· Multi-output Decision Trees and Random Forests

$$\hat{y} = [\hat{y}_1, ..., \hat{y}_L] = [h(x)]$$

all labels are assigned simultaneously

BUT the metric to optimize is still decomposable

х

х

 $y_3$ 

 $y_4$ 

 $y_2$ 

 $y_1$ 

· Independent models

- $\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), ..., h_L(\mathbf{x})]$
- · Fully-cascaded chain

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), h_2(\mathbf{x}, \hat{y}_1), ..., h_L(\mathbf{x}, \hat{y}_1, ..., \hat{y}_{L-1})]$$

 $h_1, ..., h_L = any single-output models$ 



· Multi-output Decision Trees and Random Forests

$$\hat{y} = [\hat{y}_1, ..., \hat{y}_L] = [h(x)]$$

all labels are assigned simultaneously

BUT the metric to optimize is still decomposable

х

х

 $y_3$ 

 $y_4$ 

 $y_2$ 

 $y_1$ 

· Independent models

$$\hat{y} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(x), ..., h_L(x)]$$

· Fully-cascaded chain

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), h_2(\mathbf{x}, \hat{y}_1), ..., h_L(\mathbf{x}, \hat{y}_1, ..., \hat{y}_{L-1})]$$

 $h_1, ..., h_L = any single-output models$ 



· Multi-output Decision Trees and Random Forests

$$\hat{y} = [\hat{y}_1, ..., \hat{y}_L] = [h(x)]$$

all labels are assigned simultaneously

BUT the metric to optimize is still decomposable

х

х

 $y_3$ 

 $y_4$ 

 $y_2$ 

## **Regression: some problems**

## Problem 1. Multi-modal distributions

Multi-output models may not work well for multi-modal distributions.

One possible reason: inadequate choice of the loss function.

Most models optimize  $MSE = \frac{1}{N} \sum_{j=1}^{N} (\mathbf{y}_j - \hat{\mathbf{y}}_j)^2$ .



Optimizing MSE does not help to exploit the dependencies between the targets.

**Uniform Cost Function (UCF)** is an analogue of 0/1 loss for regression.

$$\mathsf{UCF}(\delta) = \frac{1}{N} \sum_{i=1}^{N} \begin{cases} 0 \text{ if } \|\boldsymbol{y}^{i} - \hat{\boldsymbol{y}}^{i}\|_{2} < \frac{\delta}{2}, \\ 1 \text{ otherwise.} \end{cases}$$

**Correntropy** is a smooth version of UCF. FORMULA



**Uniform Cost Function (UCF)** is an analogue of 0/1 loss for regression.

$$\mathsf{UCF}(\delta) = \frac{1}{N} \sum_{i=1}^{N} \begin{cases} 0 \text{ if } \|\boldsymbol{y}^{i} - \hat{\boldsymbol{y}}^{i}\|_{2} < \frac{\delta}{2}, \\ 1 \text{ otherwise.} \end{cases}$$

**Correntropy** is a smooth version of UCF. FORMULA

**Goal = challenge:** optimize UCF or correntropy in Regressor Chains with *any base estimator*.



**Uniform Cost Function (UCF)** is an analogue of 0/1 loss for regression.

$$\mathsf{UCF}(\delta) = \frac{1}{N} \sum_{i=1}^{N} \begin{cases} 0 \text{ if } \|\boldsymbol{y}^{i} - \hat{\boldsymbol{y}}^{i}\|_{2} < \frac{\delta}{2}, \\ 1 \text{ otherwise.} \end{cases}$$

**Correntropy** is a smooth version of UCF. FORMULA

**Goal = challenge:** optimize UCF or correntropy in Regressor Chains with *any base estimator*.



## Problem 2. Backward inference in Regressor Chains

## **Problem 2. Solution**

# Classification: missing value imputation

## Missing data

#### Why is data missing?

- Errors in sensors
- Human factor (reluctance to answer particular questions)
- Combining different studies
- ...

## Missing data

#### Why is data missing?

- Errors in sensors
- Human factor (reluctance to answer particular questions)
- Combining different studies
- ...

#### Why to impute the missing data?

- Most off-the-shelf statistical and machine learning methods cannot handle missing values
- Considering only instances with complete information can lead to a loss of necessary information and can yield a very poor or even empty dataset
- Missing data itself might be of interest

## Missing data

#### Why is data missing?

- Errors in sensors
- Human factor (reluctance to answer particular questions)
- Combining different studies
- ...

#### Why to impute the missing data?

- Most off-the-shelf statistical and machine learning methods cannot handle missing values
- Considering only instances with complete information can lead to a loss of necessary information and can yield a very poor or even empty dataset
- Missing data itself might be of interest

#### Types of missingness

- Missing Completely at Random (MCAR): entirely independently of feature values
- Missing at Random (MAR): depends only on the observed feature values
- Missing Not at Random (MNAR): depends on both the observed and the unobserved feature values

#### Procedural

One procedure:

- Train a model on complete instances
- Use the fitted model to predict on instances containing missing values
- Correct observed values if changed



#### Procedural

One procedure:

- Train a model on complete instances
- Use the fitted model to predict on instances containing missing values
- Correct observed values if changed



## **Examples:** mode, kNN, PCA, Autoencoders

#### Procedural

One procedure:

- Train a model on complete instances
- Use the fitted model to predict on instances containing missing values
- Correct observed values if changed



## **Examples:** mode, kNN, PCA, Autoencoders

#### Iterative

Impute randomly, then repeat:

- Train a model on previous imputation
- Use the fitted model to predict on <u>all</u> instances
- Correct observed values if changed



#### Procedural

One procedure:

- Train a model on complete instances
- Use the fitted model to predict on instances containing missing values
- Correct observed values if changed



**Examples:** mode, kNN, PCA, Autoencoders

#### Iterative

Impute randomly, then repeat:

- Train a model on previous imputation
- Use the fitted model to predict on <u>all</u> instances
- Correct observed values if changed



**Examples:** MICE, MissForest, PCA, Autoencoders

#### Procedural

One procedure:

- Train a model on complete instances
- Use the fitted model to predict on instances containing missing values
- Correct observed values if changed



#### Iterative

Impute randomly, then repeat:

- Train a model on previous imputation
- Use the fitted model to predict on <u>all</u> instances
- Correct observed values if changed



**Examples:** mode, kNN, PCA, Autoencoders

**Examples:** MICE, MissForest, PCA, Autoencoders

+ Autoreplicative Random Forests







Why to use multi-label methods?

- compared to one-by-one methods: may deeper exploit interdependencies between the targets + less computationally expensive
- compared to neural networks: fewer parameters (good for low-sampled data)
- no need for hidden layers



Why to use multi-label methods?

- compared to one-by-one methods: may deeper exploit interdependencies between the targets + less computationally expensive
- compared to neural networks: fewer parameters (good for low-sampled data)
- no need for hidden layers

Which methods?

- Decision Trees, Random Forests, Extra Trees
- Classifier Chains, Multilabel k Nearest Neighbours, Random k-Labelsets, Conditional Dependency Networks, etc.

## Results: iterative ARF do converge

#### Imputation via Iterative Random Forests converges after several iterations



## Accuracy of imputation

| MVR            | 0.01                  | 0.05  | 0.1       | 0.2   | 0.3   | 0.01               | 0.05                    | 0.1   | 0.2   | 0.3              | 0.01  | 0.05                           | 0.1   | 0.2   | 0.3   |
|----------------|-----------------------|-------|-----------|-------|-------|--------------------|-------------------------|-------|-------|------------------|-------|--------------------------------|-------|-------|-------|
|                | Mushroom [8,124 × 22] |       |           |       |       | Soybean [307 × 35] |                         |       |       | Tumor [339 × 17] |       |                                |       |       |       |
| Complete cases | 80.1%                 | 32.3% | 10.1%     | 0.7%  | 0.04% | 69.7%              | 13.7%                   | 1.0%  | 0%    | 0%               | 83.8% | 38.9%                          | 15.0% | 1.2%  | 0.3%  |
| MICE           | 0.658                 | 0.715 | 0.741     | 0.769 | 0.777 | 0.884              | 0.884                   | 0.879 | 0.867 | 0.850            | 0.761 | 0.768                          | 0.748 | 0.754 | 0.735 |
| itARF          | 0.730                 | 0.740 | 0.747     | 0.734 | 0.707 | 0.824              | 0.850                   | 0.832 | 0.815 | 0.789            | 0.652 | 0.672                          | 0.645 | 0.660 | 0.620 |
| pARF           | 0.748                 | 0.774 | 0.761     | 0.671 | 0.478 | 0.804              | 0.779                   | 0.600 | -     | -                | 0.639 | 0.696                          | 0.650 | 0.694 | 0.635 |
| itAE           | 0.608                 | 0.618 | 0.604     | 0.584 | 0.569 | 0.653              | 0.607                   | 0.608 | 0.584 | 0.590            | 0.721 | 0.732                          | 0.692 | 0.711 | 0.710 |
| pAE            | 0.580                 | 0.494 | 0.491     | 0.538 | 0.428 | 0.653              | 0.622                   | 0.594 | -     | -                | 0.721 | 0.718                          | 0.692 | 0.690 | 0.497 |
| itPCA          | 0.604                 | 0.627 | 0.622     | 0.623 | 0.618 | 0.667              | 0.692                   | 0.671 | 0.646 | 0.603            | 0.721 | 0.740                          | 0.692 | 0.711 | 0.710 |
| pPCA           | 0.600                 | 0.587 | 0.578     | 0.537 | 0.441 | 0.655              | 0.639                   | 0.620 | -     | -                | 0.721 | 0.671                          | 0.688 | 0.626 | 0.411 |
|                |                       |       |           |       |       |                    |                         |       |       |                  |       |                                |       |       |       |
|                |                       | Vote  | es [435 × | : 16] |       | L                  | Lymphography [148 × 18] |       |       |                  |       | Financial Survey [6,394 × 212] |       |       |       |
| Complete cases | 85.3%                 | 42.2% | 18.5%     | 1.3%  | 0.4%  | 81.8%              | 40.5%                   | 14.9% | 2.7%  | 0%               | 11.8% | 0%                             | 0%    | 0%    | 0%    |
| MICE           | 0.768                 | 0.795 | 0.771     | 0.768 | 0.782 | 0.750              | 0.679                   | 0.665 | 0.648 | 0.651            | -     | -                              | -     | -     | -     |
| itARF          | 0.719                 | 0.726 | 0.728     | 0.723 | 0.718 | 0.714              | 0.639                   | 0.638 | 0.628 | 0.600            | 0.684 | 0.677                          | 0.676 | 0.667 | 0.661 |
| pARF           | 0.730                 | 0.758 | 0.756     | 0.522 | 0.495 | 0.636              | 0.647                   | 0.604 | 0.608 | _                | 0.633 | -                              | -     | -     | -     |
| itAE           | 0.697                 | 0.563 | 0.602     | 0.578 | 0.570 | 0.700              | 0.474                   | 0.485 | 0.448 | 0.487            | 0.626 | 0.617                          | 0.616 | 0.604 | 0.596 |
| pAE            | 0.638                 | 0.546 | 0.600     | 0.524 | 0.488 | 0.679              | 0.514                   | 0.563 | 0.611 | -                | 0.313 | -                              | -     | -     | -     |
| itPCA          | 0.665                 | 0.583 | 0.567     | 0.572 | 0.570 | 0.686              | 0.513                   | 0.477 | 0.468 | 0.484            | 0.653 | 0.645                          | 0.645 | 0.634 | 0.627 |
| pPCA           | 0.595                 | 0.499 | 0.567     | 0.507 | 0.453 | 0.693              | 0.536                   | 0.562 | 0.502 | -                | 0.299 | -                              | -     | -     | -     |

- Procedural ARFs: may be powerful when enough complete instances
- MICE: as powerful as computationally expensive
- Iterative ARFs: still powerful + significantly quicker

## Time complexity

#### In theory:

- $\cdot p =$ number of features
- $\cdot n_{iter} = number of iterations$

| itARF                           | pARF             | MICE                              |  |  |  |
|---------------------------------|------------------|-----------------------------------|--|--|--|
| $\mathcal{O}(n_{iter} \cdot p)$ | $\mathcal{O}(p)$ | $\mathcal{O}(n_{iter} \cdot p^2)$ |  |  |  |

## Time complexity

#### In theory:

- $\cdot p =$ number of features
- $\cdot$  *n<sub>iter</sub>* = number of iterations

| itARF                           | pARF             | MICE                              |  |  |  |
|---------------------------------|------------------|-----------------------------------|--|--|--|
| $\mathcal{O}(n_{iter} \cdot p)$ | $\mathcal{O}(p)$ | $\mathcal{O}(n_{iter} \cdot p^2)$ |  |  |  |

#### In practice:



## Usecase: Single Nucleotide Polymorphisms (SNP)



Copyright: Scientific DX GmbH, 2020

- Categorical: 0 (dominant-dominant), 1 (dominant-mutant), 2 (mutant-mutant)
- High-dimensional  $(10^5 10^6)$  and low-sampled  $(10^2 10^3)$
- Ordering is important
- Missing values occur due to external mechanisms  $\implies$  MCAR

## Usecase: Single Nucleotide Polymorphisms (SNP)



Copyright: Scientific DX GmbH, 2020

- Categorical: 0 (dominant-dominant), 1 (dominant-mutant), 2 (mutant-mutant)
- High-dimensional  $(10^5 10^6)$  and low-sampled  $(10^2 10^3)$
- Ordering is important
- Missing values occur due to external mechanisms  $\implies$  MCAR

Methods:

- reference-based (state-of-the-art for human data)
- reference-free (when reference panels are not available)

## **Chains of Autoreplicative Random Forests**



- Procedural approach: one window of size  $\Delta =$  complete instances + instances with missing values
- Chain of windows: on each step, stacking  $\nu$ windows with already imputed values as additional features
- Ensemble of chains: one forward chain, one backward chain, several random chains

## Gridsearch for parameters $\Delta$ and $\nu$



Lighter color / higher accuracy

 $\Delta: \text{ bigger fraction of missing values} \to \text{smaller size of window} \implies \\ \text{can be estimated theoretically, no need for search}$ 

 $\nu :$  may depend on problem

## Accuracy

|                                                     | 0.01  | 0.05     | 0.1       | 0.2       | 0.3   | 0.01                         | 0.05  | 0.1   | 0.2   | 0.3   |
|-----------------------------------------------------|-------|----------|-----------|-----------|-------|------------------------------|-------|-------|-------|-------|
|                                                     |       | Eucalypt | us [970 : | × 33,398  | J     |                              |       |       |       |       |
| ChARF                                               | 0.952 | 0.935    | 0.916     | 0.882     | 0.845 | 0.970                        | 0.950 | 0.926 | 0.866 | 0.810 |
| kNN (5/10)                                          | 0.803 | 0.802    | 0.801     | 0.798     | 0.794 | 0.851                        | 0.849 | 0.847 | 0.843 | 0.839 |
| mode                                                | 0.727 | 0.727    | 0.726     | 0.727     | 0.726 | 0.725                        | 0.732 | 0.731 | 0.730 | 0.729 |
| SVD (50/500)                                        | 0.647 | 0.648    | 0.645     | 0.643     | 0.636 | 0.788                        | 0.788 | 0.788 | 0.785 | 0.780 |
| MICE                                                | -     | -        | -         | -         | -     | -                            | -     | -     | -     | -     |
|                                                     |       |          |           |           |       |                              |       |       |       |       |
|                                                     | Co    | lorado B | eetle [18 | 38 × 34,1 | .86]  | Arabica Coffee [596 × 4,666] |       |       |       |       |
| ChARF                                               | 0.835 | 0.824    | 0.818     | 0.805     | 0.792 | 0.897                        | 0.886 | 0.878 | 0.866 | 0.854 |
| kNN (50/10)                                         | 0.765 | 0.763    | 0.765     | 0.765     | 0.764 | 0.867                        | 0.866 | 0.866 | 0.865 | 0.864 |
| mode                                                | 0.761 | 0.760    | 0.762     | 0.761     | 0.761 | 0.807                        | 0.804 | 0.805 | 0.805 | 0.804 |
| SVD (50/100)                                        | 0.740 | 0.737    | 0.737     | 0.735     | 0.734 | 0.693                        | 0.694 | 0.696 | 0.692 | 0.690 |
| MICE                                                | -     | -        | -         | -         | -     | 0.757                        | 0.741 | 0.724 | 0.689 | 0.664 |
| Wheat [388 × 9,763] Coffea Canephora [119 × 45,748] |       |          |           |           |       |                              |       |       |       |       |
| ChARF                                               | 0.821 | 0.808    | 0.795     | 0.777     | 0.762 | 0.799                        | 0.781 | 0.761 | 0.731 | 0.717 |
| kNN (10/10)                                         | 0.823 | 0.819    | 0.818     | 0.815     | 0.811 | 0.737                        | 0.739 | 0.737 | 0.734 | 0.731 |
| mode                                                | 0.729 | 0.727    | 0.729     | 0.729     | 0.727 | 0.691                        | 0.693 | 0.692 | 0.692 | 0.691 |
| SVD (200/50)                                        | 0.622 | 0.618    | 0.609     | 0.600     | 0.594 | 0.456                        | 0.453 | 0.450 | 0.449 | 0.450 |
| MICE                                                | 0.641 | 0.635    | 0.621     | 0.585     | 0.545 | -                            | -     | -     | -     | -     |









- MICE: run with 10 neighbors for each feature, still worked only for smaller data
- Autoencoders: not taken into comparison (no complete data for training)
- Well-known methods for SNP imputation: *k* Nearest Neighbors, Single Value Decomposition

## Conclusions

- Unusual and effective usage of multi-label methods, e.g. Random Forests:
  - $\cdot$  autoreplication
  - $\cdot\,$  missing value imputation
  - $\cdot$  denoising
  - $\cdot \,$  outlier detection

## Conclusions

- Unusual and effective usage of multi-label methods, e.g. Random Forests:
  - $\cdot \ \ \mathsf{autoreplication}$
  - $\cdot\,$  missing value imputation
  - $\cdot$  denoising
  - $\cdot \,$  outlier detection
- We show how probabilistic training can be easily added to the model

## Conclusions

- Unusual and effective usage of multi-label methods, e.g. Random Forests:
  - $\cdot \ \ \mathsf{autoreplication}$
  - $\cdot\,$  missing value imputation
  - $\cdot \ \text{denoising}$
  - $\cdot \,$  outlier detection
- We show how probabilistic training can be easily added to the model
- ARF vs MICE: high quality and much faster

- Unusual and effective usage of multi-label methods, e.g. Random Forests:
  - $\cdot$  autoreplication
  - $\cdot\,$  missing value imputation
  - $\cdot$  denoising
  - $\cdot \,$  outlier detection
- We show how probabilistic training can be easily added to the model
- ARF vs MICE: high quality and much faster
- ARF vs Autoencoders:
  - $\cdot$  no need for one-hot encoding  $\implies$  less features.
  - $\cdot\,$  lower time complexity  $\implies$  works for high-dimensional datasets
  - $\cdot\,$  no need for complete data

• Multi-target Random Forests still optimize decomposable metrics (entropy, gini): can we model the labels indeed jointly?

- Multi-target Random Forests still optimize decomposable metrics (entropy, gini): can we model the labels indeed jointly?
- For very wide datasets (> 10,000 features) multi-target methods are very memory expensive

- Multi-target Random Forests still optimize decomposable metrics (entropy, gini): can we model the labels indeed jointly?
- For very wide datasets (> 10,000 features) multi-target methods are very memory expensive
- Studies for MAR and MNAR scenarios

- Multi-target Random Forests still optimize decomposable metrics (entropy, gini): can we model the labels indeed jointly?
- For very wide datasets (> 10,000 features) multi-target methods are very memory expensive
- Studies for MAR and MNAR scenarios
- Regression (e.g. gene expression)

- Multi-target Random Forests still optimize decomposable metrics (entropy, gini): can we model the labels indeed jointly?
- For very wide datasets (> 10,000 features) multi-target methods are very memory expensive
- Studies for MAR and MNAR scenarios
- Regression (e.g. gene expression)
- How can we avoid overfitting in Iterative RF?

## Thank you!