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inference in probabilistic Regressor Chains with distributional constraints.

pre-print E. Antonenko, A.Carreño, J. Read, Autoreplicative Random Forests for missing

value imputation.

pre-print M. Konnova, E. Antonenko, J. Read, Missing value imputation for genomics

data using a Sequence Based Generative Adversarial Network (SBGAN).

MLL workshop, ECML 2022 E. Antonenko, J. Read, Chains of Autoreplicative Random Forests for missing

value imputation in high-dimensional datasets, [Best paper award].

IDA 2022 E. Antonenko, J. Read, Multi-modal ensembles of regressor chains for

multi-output prediction, Advances in Intelligent Data Analysis XXI - 21st

International Symposium.

PeerJ 2016 V. Ivanenko, E. Antonenko, M. Gelfand, J. Yager, F. Ferrari, Changes in

segmentation and setation along the anterior/posterior axis of the homonomous

trunk limbs of a remipede (Crustacea, Arthropoda).
4



Introduction: Multi-output

prediction



Definition of a multi-output problem

Given: Dataset D = {(x i , y i )}Ni=1 of N samples:

• features x i = [x i
1, ..., x

i
M ]

• outputs y i = [y i
1, ..., y

i
L]

Goal: Model f (X ) = y which outputs predictions ŷ i = [ŷ i
1, ..., ŷ

i
L] having

D observed.

Example:

X Ag
e

H
ei
gh
t

Bo
dy
le
ng
th

W
ei
gh
t

A · · · 12,44 127,4 151 294,5

B · · · 9,44 137,6 156 328

C · · · 10,44 128,6 157 377

D · · · 6,13 125,6 150 305,5

E · · · 6,15 139 156 325

F · · · ? ? ? ?

Idea: to model these labels together in order to get better prediction

performance
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Some approaches to multi-output problems

· Independent models

ŷ = [ŷ1, ..., ŷL] = [h1(x), ..., hL(x)]
y4y3y2y1

x

· Fully-cascaded chain

ŷ = [ŷ1, ..., ŷL] = [h1(x), h2(x , ŷ1), ..., hL(x , ŷ1, ..., ŷL−1)]

h1, ..., hL = any single-output models
y4y3y2y1

x

X y1 y2 y3 y4
F · · · ? ? ? ?

· Multi-output Decision Trees and Random Forests

ŷ = [ŷ1, ..., ŷL] = [h(x)]

all labels are assigned simultaneously

BUT the metric to optimize is still decomposable

PICTURE
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Regression: some problems



Problem 1. Multi-modal distributions

Multi-output models may not work well for multi-modal distributions.

One possible reason: inadequate choice of the loss function.

Most models optimize MSE = 1
N

∑N
j=1(yj − ŷj)2.

Optimizing MSE does not help to exploit the dependencies between the

targets.
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Problem 1. Solution

Uniform Cost Function (UCF) is an

analogue of 0/1 loss for regression.

UCF(δ) =
1

N

N∑
i=1

{
0 if ∥y i − ŷ i∥2 < δ

2 ,

1 otherwise.

Correntropy is a smooth version of UCF.

FORMULA

Goal = challenge: optimize UCF or correntropy in Regressor Chains

with any base estimator.

✓
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2 ,

1 otherwise.

Correntropy is a smooth version of UCF.

FORMULA

Goal = challenge: optimize UCF or correntropy in Regressor Chains

with any base estimator.

✓

8



Problem 1. Solution

Uniform Cost Function (UCF) is an

analogue of 0/1 loss for regression.

UCF(δ) =
1

N

N∑
i=1

{
0 if ∥y i − ŷ i∥2 < δ
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Problem 2. Backward inference in Regressor Chains

9



Problem 2. Solution
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Classification: missing value

imputation



Missing data

Why is data missing?

• Errors in sensors

• Human factor (reluctance to answer particular questions)

• Combining different studies

• ...

Why to impute the missing data?

• Most off-the-shelf statistical and machine learning methods cannot handle

missing values

• Considering only instances with complete information can lead to a loss of

necessary information and can yield a very poor or even empty dataset

• Missing data itself might be of interest

Types of missingness

• Missing Completely at Random (MCAR): entirely independently of feature

values

• Missing at Random (MAR): depends only on the observed feature values

• Missing Not at Random (MNAR): depends on both the observed and the

unobserved feature values
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Procedural and Iterative Imputation

Procedural

One procedure:

• Train a model on complete instances

• Use the fitted model to predict on

instances containing missing values

• Correct observed values if changed

Missing
Dataset

Select complete
subset

Train
model

Predict
missing values

Examples: mode, kNN, PCA,

Autoencoders

Iterative

Impute randomly, then repeat:

• Train a model on previous imputation

• Use the fitted model to predict on all

instances

• Correct observed values if changed

Missing Dataset Imputed Dataset

Learn
the model

Predict the
missing values

Randomly

Repeat
until convergence

Examples: MICE, MissForest, PCA,

Autoencoders

+ Autoreplicative Random Forests
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Autoencoders =⇒ Autoreplicative Random Forests

Autoencoder Denoising Autoencoder

Autoreplicator

Why to use multi-label methods?

• compared to one-by-one methods: may deeper exploit interdependencies

between the targets + less computationally expensive

• compared to neural networks: fewer parameters (good for low-sampled data)

• no need for hidden layers

Which methods?

• Decision Trees, Random Forests, Extra Trees

• Classifier Chains, Multilabel k Nearest Neighbours, Random k-Labelsets,

Conditional Dependency Networks, etc.
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Results: iterative ARF do converge

Imputation via Iterative Random Forests converges after several iterations

14



Accuracy of imputation

MVR 0.01 0.05 0.1 0.2 0.3 0.01 0.05 0.1 0.2 0.3 0.01 0.05 0.1 0.2 0.3

Mushroom [8,124 x 22] Soybean [307 x 35] Tumor [339 x 17]

Complete cases 80.1% 32.3% 10.1% 0.7% 0.04% 69.7% 13.7% 1.0% 0% 0% 83.8% 38.9% 15.0% 1.2% 0.3%

MICE 0.658 0.715 0.741 0.769 0.777 0.884 0.884 0.879 0.867 0.850 0.761 0.768 0.748 0.754 0.735

itARF 0.730 0.740 0.747 0.734 0.707 0.824 0.850 0.832 0.815 0.789 0.652 0.672 0.645 0.660 0.620

pARF 0.748 0.774 0.761 0.671 0.478 0.804 0.779 0.600 – – 0.639 0.696 0.650 0.694 0.635

itAE 0.608 0.618 0.604 0.584 0.569 0.653 0.607 0.608 0.584 0.590 0.721 0.732 0.692 0.711 0.710

pAE 0.580 0.494 0.491 0.538 0.428 0.653 0.622 0.594 – – 0.721 0.718 0.692 0.690 0.497

itPCA 0.604 0.627 0.622 0.623 0.618 0.667 0.692 0.671 0.646 0.603 0.721 0.740 0.692 0.711 0.710

pPCA 0.600 0.587 0.578 0.537 0.441 0.655 0.639 0.620 – – 0.721 0.671 0.688 0.626 0.411

Votes [435 x 16] Lymphography [148 x 18] Financial Survey [6,394 x 212]

Complete cases 85.3% 42.2% 18.5% 1.3% 0.4% 81.8% 40.5% 14.9% 2.7% 0% 11.8% 0% 0% 0% 0%

MICE 0.768 0.795 0.771 0.768 0.782 0.750 0.679 0.665 0.648 0.651 – – – – –

itARF 0.719 0.726 0.728 0.723 0.718 0.714 0.639 0.638 0.628 0.600 0.684 0.677 0.676 0.667 0.661

pARF 0.730 0.758 0.756 0.522 0.495 0.636 0.647 0.604 0.608 – 0.633 – – – –

itAE 0.697 0.563 0.602 0.578 0.570 0.700 0.474 0.485 0.448 0.487 0.626 0.617 0.616 0.604 0.596

pAE 0.638 0.546 0.600 0.524 0.488 0.679 0.514 0.563 0.611 – 0.313 – – – –

itPCA 0.665 0.583 0.567 0.572 0.570 0.686 0.513 0.477 0.468 0.484 0.653 0.645 0.645 0.634 0.627

pPCA 0.595 0.499 0.567 0.507 0.453 0.693 0.536 0.562 0.502 – 0.299 – – – –

• Procedural ARFs: may be powerful when enough complete instances

• MICE: as powerful as computationally expensive

• Iterative ARFs: still powerful + significantly quicker
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Time complexity

In theory:

· p = number of features

· niter = number of iterations

itARF pARF MICE

O(niter · p) O(p) O(niter · p2)

In practice:

16
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Usecase: Single Nucleotide Polymorphisms (SNP)

Copyright: Scientific DX GmbH, 2020

• Categorical: 0 (dominant-dominant), 1 (dominant-mutant), 2 (mutant-mutant)

• High-dimensional (105 − 106) and low-sampled (102 − 103)

• Ordering is important

• Missing values occur due to external mechanisms =⇒ MCAR

Methods:

• reference-based (state-of-the-art for human data)

• reference-free (when reference panels are not available)

17
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Chains of Autoreplicative Random Forests

• Procedural approach:

one window of size ∆ =

complete instances +

instances with missing values

• Chain of windows:

on each step, stacking ν

windows with already

imputed values as additional

features

• Ensemble of chains:

one forward chain, one

backward chain, several

random chains

18



Gridsearch for parameters ∆ and ν

1% 5% 10% 20% 30%

Lighter color / higher accuracy

∆: bigger fraction of missing values → smaller size of window =⇒
can be estimated theoretically, no need for search

ν: may depend on problem

19



Accuracy

0.01 0.05 0.1 0.2 0.3 0.01 0.05 0.1 0.2 0.3

Maize [247 x 44,729] Eucalyptus [970 x 33,398]

ChARF 0.952 0.935 0.916 0.882 0.845 0.970 0.950 0.926 0.866 0.810

kNN (5/10) 0.803 0.802 0.801 0.798 0.794 0.851 0.849 0.847 0.843 0.839

mode 0.727 0.727 0.726 0.727 0.726 0.725 0.732 0.731 0.730 0.729

SVD (50/500) 0.647 0.648 0.645 0.643 0.636 0.788 0.788 0.788 0.785 0.780

MICE – – – – – – – – – –

Colorado Beetle [188 x 34,186] Arabica Coffee [596 x 4,666]

ChARF 0.835 0.824 0.818 0.805 0.792 0.897 0.886 0.878 0.866 0.854

kNN (50/10) 0.765 0.763 0.765 0.765 0.764 0.867 0.866 0.866 0.865 0.864

mode 0.761 0.760 0.762 0.761 0.761 0.807 0.804 0.805 0.805 0.804

SVD (50/100) 0.740 0.737 0.737 0.735 0.734 0.693 0.694 0.696 0.692 0.690

MICE – – – – – 0.757 0.741 0.724 0.689 0.664

Wheat [388 x 9,763] Coffea Canephora [119 x 45,748]

ChARF 0.821 0.808 0.795 0.777 0.762 0.799 0.781 0.761 0.731 0.717

kNN (10/10) 0.823 0.819 0.818 0.815 0.811 0.737 0.739 0.737 0.734 0.731

mode 0.729 0.727 0.729 0.729 0.727 0.691 0.693 0.692 0.692 0.691

SVD (200/50) 0.622 0.618 0.609 0.600 0.594 0.456 0.453 0.450 0.449 0.450

MICE 0.641 0.635 0.621 0.585 0.545 – – – – –

• MICE: run with 10 neighbors for each feature, still worked only for smaller data

• Autoencoders: not taken into comparison (no complete data for training)

• Well-known methods for SNP imputation: k Nearest Neighbors, Single Value

Decomposition 20



Conclusions

• Unusual and effective usage of multi-label methods, e.g. Random

Forests:

· autoreplication

· missing value imputation

· denoising

· outlier detection

• We show how probabilistic training can be easily added to the model

• ARF vs MICE: high quality and much faster

• ARF vs Autoencoders:

· no need for one-hot encoding =⇒ less features.

· lower time complexity =⇒ works for high-dimensional datasets

· no need for complete data
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· missing value imputation

· denoising

· outlier detection

• We show how probabilistic training can be easily added to the model

• ARF vs MICE: high quality and much faster
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Questions of interest

• Multi-target Random Forests still optimize decomposable metrics

(entropy, gini):

can we model the labels indeed jointly?

• For very wide datasets (> 10, 000 features) multi-target methods are

very memory expensive

• Studies for MAR and MNAR scenarios

• Regression (e.g. gene expression)

• How can we avoid overfitting in Iterative RF?
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Thank you!
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