
Katia Antonenko  

[✉] ekaterina.antonenko@minesparis.psl.eu 

Paris Postdocs Seminar — Institut Imagine — 21 January 2026 

From biology to machine learning and back: 
understanding transposable element 

methylation and its phenotypic effects

PÉpiTE team 



Contents
 Background: transposable elements and methylation 

 Part I: analysis of our TE cohort 

 Part II: understanding methylation 

 Part III: associations with gene expression 

 Conclusions



Transposable Elements
 Transposable Elements (TEs, “jumping genes”) are an important source of mutations

TE

insertion
mobilization

gene

Barbara McClintock 
Nobel prize 1983



Transposable Elements
 Transposable Elements (TEs, “jumping genes”) are an important source of mutations

TE

insertion
mobilization

gene

Class I 
(retro-

transposons) 

RNA

TE

DNA

TE

superfamily LIN SIN Copia Gypsy … hAT MuDR Mariner Pogo …

Class II 
(DNA 

transposons) 

Barbara McClintock 
Nobel prize 1983

 TEs transpose by cut-and-paste or copy-and-paste mechanisms



Transposable Elements
 Transposable Elements (TEs, “jumping genes”) are an important source of mutations

TE

insertion
mobilization

gene

Class I 
(retro-

transposons) 

RNA

TE

DNA

TE

superfamily LIN SIN Copia Gypsy … hAT MuDR Mariner Pogo …

Class II 
(DNA 

transposons) 

Barbara McClintock 
Nobel prize 1983

 TEs transpose by cut-and-paste or copy-and-paste mechanisms

 BUT: most TEs are degraded and do not transpose
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Wells & Feschotte,  Annual Review of Genetics 2020
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Epigenetic Regulation of Transposable Elements

CNR

DNA methylation: 

 is an essential regulatory mechanism of TEs activity 

 targets CG / CHG / CHH in plants  
[H = anything besides G] 

 is regulated by multiple pathways 

 affects TE / gene expression (~ silencing) 

 may spread to flanking regions 

 example: 

methylated promoter  no RNA   
 no protein  no function 

 sometimes may be inherited

⟹ ⟹
⟹ ⟹
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Manning et al., Nat Genet 2006
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 perfect Mendelian segregation though no DNA changes observed⟹
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 Understanding better methylation mechanisms of TEs

 Include TEs and methylation variation into genotype-to-phenotype studies



Part I: analysis of our TE cohort 



Our data: Arabidopsis Thaliana
 87 strains from throughout the world,  

sequenced with ultra-long reads (Nanopore) 

 TE annotation (in-house pipeline: GraffiTE + Blast) 
= Genotyping (same TE across all genomes) + exact positions 

 Full methylation profiles  
(for all contexts CG, CHG, CHH) 

 Gene annotation 

 SNP annotation 

 Gene expression data

Kawakatsu et al. Cell 2016, Alonso-Blanco et al. Cell 2016, Quadrana et al. eLife 2016 
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 TE age ~ Insertion frequency (n / N) (dataset-dependent) 

 TE age ~ % length wrt reference (dataset-agnostic)



Our data: Arabidopsis Thaliana
 328.043 TEs annotated across N=87 genomes 

 8.795 Transposon Insertion Polymorphisms (TIPs) 

 TE age ~ Insertion frequency (n / N) (dataset-dependent) 

 TE age ~ % length wrt reference (dataset-agnostic)



Our data: Arabidopsis Thaliana
 328.043 TEs annotated across N=87 genomes 

 8.795 Transposon Insertion Polymorphisms (TIPs) 

 TE age ~ Insertion frequency (n / N) (dataset-dependent) 

 TE age ~ % length wrt reference (dataset-agnostic)



Our data: Arabidopsis Thaliana

All TEs

 328.043 TEs annotated across N=87 genomes 

 8.795 Transposon Insertion Polymorphisms (TIPs) 

 TE age ~ Insertion frequency (n / N) (dataset-dependent) 

 TE age ~ % length wrt reference (dataset-agnostic)



Our data: Arabidopsis Thaliana

All TEs Only polymorphic TEs

 328.043 TEs annotated across N=87 genomes 

 8.795 Transposon Insertion Polymorphisms (TIPs) 

 TE age ~ Insertion frequency (n / N) (dataset-dependent) 

 TE age ~ % length wrt reference (dataset-agnostic)



Our data: Arabidopsis Thaliana

All TEs Only polymorphic TEs

 328.043 TEs annotated across N=87 genomes 

 8.795 Transposon Insertion Polymorphisms (TIPs) 

 TE age ~ Insertion frequency (n / N) (dataset-dependent) 

 TE age ~ % length wrt reference (dataset-agnostic)



Our data: Arabidopsis Thaliana
 Young TEs tend to be methylated and 
(sometimes) to spread 

 It is not rare to observe non-methylated but 
spread TEs (mostly old) 

 Hypothesis: the effect is due to secondary de-
methylation of decayed TEs (but spreading 
remains) 



Our data: Arabidopsis Thaliana
 Young TEs tend to be methylated and 
(sometimes) to spread 

 It is not rare to observe non-methylated but 
spread TEs (mostly old) 

 Hypothesis: the effect is due to secondary de-
methylation of decayed TEs (but spreading 
remains) 

 Which features (and further, biological 
mechanisms) define methylation? 

 Can we predict the methylation using 
genetic features only?

⟹

⟹



Part II: understanding methylation 



Model: 
• Random Forest (hyper parameters tuned via cross-validation stratified by TIPs) 

Features: 
• TE (length, distance to pericentromere, superfamily, if inside a gene) 
• Nearest 2 genes (length, distance, relative direction) 
• Average genome-wide methylation in CG, CHG, CHH contexts  
• Densities of CG, CHG, CHH contexts 

Data: all TEs (328.037)
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SHAP

Impurity-based feature importances 
* 10 independent runs with different random seeds

SHAP values 
* 10 folds in a cross-validation manner

Accumulated Local Effects (ALE) * 10 folds in a cross-validation manner
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Modeling TE methylation
Who are the escapees? 

 Hypothesis: selective pressure may be one of the factors  
(some genes need to be expressed, some need to be silenced)

Distance from the gene



 The predictive model is accurate within appropriate range 

 The length in % wrt to the reference (proxy for age) is the most informative feature 
(= young TEs tend to be methylated) 

 Context densities play an important role, as well as superfamilies 

 There are escapees in both directions (therefore, some missed factors) 

 An example of possible factor: selective pressure for gene expression

Modeling TE methylation
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Modeling methylation spreading

Model:  
Random Forest  
(hyper parameters tuned via cross-validation stratified by TIPs) 

Features: 
• TE (length, distance to pericentromere, superfamily,  

if inside a gene) 
• Nearest 2 genes (length, distance, relative direction) 
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Data:  
Only methylated TEs (107.950)
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Modeling methylation spreading

Pearson correlation = 0.528

Pearson correlation = 0.750

Pearson correlation = 0.822

Model:  
Random Forest  
(hyper parameters tuned via cross-validation stratified by TIPs) 

Features: 
• TE (length, distance to pericentromere, superfamily,  

if inside a gene) 
• Nearest 2 genes (length, distance, relative direction) 
• Methylation in CG, CHG, CHH contexts  

(average genome-wide, TE, edges of TE, previous windows) 
• Densities of CG, CHG, CHH contexts 

Data:  
Only methylated TEs (107.950)



Impurity-based feature importances 
* 10 independent runs with different random seeds

SHAP values 
* 10 folds in a cross-validation manner

Modeling methylation spreading
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Accumulated Local Effects (ALE)

Conclusion: 
 Methylation of the TE edges consistently comes as the most important feature with monotonous effect increase 

 TE is methylated on the edges  more likely to spread ⟹

Modeling methylation spreading



Question: 
 What defines the methylation of the TE edges? 

Accumulated Local Effects (ALE)

Conclusion: 
 Methylation of the TE edges consistently comes as the most important feature with monotonous effect increase 

 TE is methylated on the edges  more likely to spread ⟹

Modeling methylation spreading



Modeling edges methylation



Back to biology of methylation
 The most important factors for spreading:  

• methylation of the TE edges in the CHG and CHH contexts 

• % of full length (proxy for the TE age) 

• density of CG contexts 
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Back to biology of methylation

 Hypothesis: the non-canonical RdDM machinery is responsible for spreading 
• targets all contexts (CG, CHG, CHH) 
• the only pathway capable of adding DNA methylation de novo

 Test: mutants of Col-0 strain of A. Thaliana where 
different methylation pathways are knocked out

Erdmann & Picard, PLOS Genetics 2020

 The most important factors for spreading:  

• methylation of the TE edges in the CHG and CHH contexts 

• % of full length (proxy for the TE age) 

• density of CG contexts 
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CHG and CHH methylation (and spreading!)  
disappear in RdDM mutants

Back to biology of methylation



Back to biology of methylation

 The predictive model is accurate within appropriate range 

 Different explainability tools have been explored, and they provide consistent conclusions 

 For spreading, a potential actor (RdDM) is identified



Part III: associations with gene 
expression 



Scientific DX GmbH, 2020

www.futura-sciences.com

Tam et al., Nature Reviews Genetics 2019

From genotype to phenotype
Genome-Wide  

Association Study⟹
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Association Study⟹
Gene A Gene B Gene C

Genome 1

Genome 2

Genome 3

3 groups:  
00 = absent  
10 = present and not methylated (< 5%) 
11 = present and methylated (> 5%) 
Kruskal-Wallis test (instead of t-test)

TE 3TE 1

TE 3TE 1

TE 1

TE 2

TE 2

Genome 1

Genome 2

Genome 3

Setting: 
Genotypes: 50 genomes * 9.557 mTIPs 
Phenotypes: 37k genes (including alternatively spliced) 
Standard GWAS pipeline (quality controls, *statistical testing, Bonferroni corrections)

Findings: 
All (cis + trans) associations: 1.054 mTIPs for 1.091 genes (corrected by Ntips*Ngenes) 
Cis-associations (<1.500 bp distance): 457 mTIPs for 633 genes [most are not found with SNPs]



Inside geneExamples of cis- effects:
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*Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein family 



Confirmed 
spreaderInside geneExamples of cis- effects:

From epi-genotype to phenotype

For trans- effects: 
Future work: extending and fine-tuning GWAS signals with gene networks

*Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein family 
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Conclusions

 Genome-wide association studies may be improved by including TIP and methylation data 

 An example of the workflow: 

    biological phenomenon  machine learning model  explanations  real biological mechanisms⟹ ⟹ ⟹

 Pipeline for precise TIP annotation (genotyping + positions)  

 Unique dataset: fully annotated for TIPs, genes, and methylation

 Significant part of methylation may be explained from a TE sequence

 But, there are exceptions in both directions

 Potential evidence of (a) secondary demethylation, and (b) remaining spreading in old decayed TEs
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