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Transposable Elements

< Transposable Elements (TEs, “jJumping genes”) are an important source of mutations
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~ BUT: most TEs are degraded and do not transpose



Transposable Elements

Mutations may be deleterious...

Bhattacharyya et al. Cell 1990
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Transposable Elements

Mutations may be deleterious... ...yet sometimes adaptive
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Transposable Elements
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Epigenetic Regulation of Transposable Elements

NH, NH,
DNA methylation: NN SN
A SEN
~ iIs an essential regulatory mechanism of TEs activity m O m O
< targets CG / CHG / CHH in plants cytosine methylated
cytosine

[H = anything besides G]
~ is regulated by multiple pathways
~ affects TE / gene expression (~ silencing)
~ may spread to flanking regions

~ example:

methylated promoter =— no RNA —
—> no protein = no function

~ sometimes may be inherited



Epigenetic Regulation of Transposable Elements

NH, NH,
DNA methylation: NN SN
LA SPS
< iIs an essential regulatory mechanism of TEs activity m O m O
< targets CG / CHG / CHH in plants cytosine metthyl_ated
[H = anything besides G] cYHOSINe
~ is regulated by multiple pathways spontaneous epimutation
| }
- affects TE / gene expression (~ silencing) - X
IBARK ZE 7t¢
~ may spread to flanking regions COPIA COPIA H —

~ example:

methylated promoter =— no RNA —
—> no protein = no function

~ sometimes may be inherited

Manning et al., Nat Genet 2006

—> perfect Mendelian segregation though no DNA changes observed
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- Understanding better methylation mechanisms of TEs



Motivation

- Understanding better methylation mechanisms of TEs

~ Include TEs and methylation variation into genotype-to-phenotype studies



Part I: analysis of our TE cohort



Our data: Arabidopsis Thaliana

< 87 strains from throughout the world,
sequenced with ultra-long reads (Nanopore)

~ TE annotation (in-house pipeline: GraffiTE + Blast)
= Genotyping (same TE across all genomes) + exact positions

<o Full methylation profiles
(for all contexts CG, CHG, CHH)

< Gene annotation
~ SNP annotation

~ Gene expression data = -

Kawakatsu et al. Cell 2016, Alonso-Blanco et al. Cell 2016, Quadrana et al. eLife 2016



Our data: Arabidopsis Thaliana

- 328.043 TEs annotated across N=87 genomes
= 8.795 Transposon Insertion Polymorphisms (TIPs)
~ TE age ~ Insertion frequency (n / N) (dataset-dependent)

-~ TE age ~ % length wrt reference (dataset-agnostic)
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Our data: Arabidopsis Thaliana

~ 328.043 TEs annotated across N=87 genomes
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Our data: Arabidopsis Thaliana

1o Insertion frequency 0.0115--0.1149 Young TEs tend to be methylated and
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Part ll: understanding methylation



Modeling TE methylation

Model:
- Random Forest (hyper parameters tuned via cross-validation stratified by TIPs)

Features:

- TE (length, distance to pericentromere, superfamily, if inside a gene)
- Nearest 2 genes (length, distance, relative direction)

- Average genome-wide methylation in CG, CHG, CHH contexts
. Densities of CG, CHG, CHH contexts

Data: all TEs (328.037)
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Modeling TE methylation

Model: 9
. Random Forest (hyper parameters tuned via cross-validation stratified by TIPs) 2
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Features: §
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Impurity-based feature importances

*10 independent runs with different random seeds
Top 6 Features for TE.Meth.all
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TE.Meth.all
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Who are the escapees?
> Can we separate {underpredicted vs. low_wellpredicted} and {overpredicted vs. high_wellpredicted}?



Modeling TE methylation

Who are the escapees?
~ Can we separate {underpredicted vs. low_wellpredicted} and {overpredicted vs. high_wellpredicted}?

~ For the most of the features, the groups have similar distributions
(so, the model is reasonable wrt the data)
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Modeling TE methylation

Who are the escapees?
~ Can we separate {underpredicted vs. low_wellpredicted} and {overpredicted vs. high_wellpredicted}?

< For the most of the features, the groups have similar distributions
(so, the model is reasonable wrt the data)
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Modeling TE methylation

Who are the escapees?

~ Hypothesis: selective pressure may be one of the factors
(some genes need to be expressed, some need to be silenced)

gene distance threshold: 0 gene distance threshold: 100.0 gene distance threshold: 1000.0
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Modeling TE methylation

> The predictive model is accurate within appropriate range

> The length in % wrt to the reference (proxy for age) is the most informative feature
(= young TEs tend to be methylated)

- Context densities play an important role, as well as superfamilies
> There are escapees in both directions (therefore, some missed factors)

> An example of possible factor: selective pressure for gene expression



Modeling methylation spreading
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Only methylated TEs (107.950)



Modeling methylatlon spreading
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Modeling methylation spreading

Impurity-based feature importances
*10 independent runs with different random seeds
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Effect

Modeling methylation spreading

Accumulated Local Effects (ALE)
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Modeling methylation spreading

Accumulated Local Effects (ALE)
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Conclusion:

- Methylation of the TE edges consistently comes as the most important feature with monotonous effect increase

~ TE is methylated on the edges =—> more likely to spread



Modeling methylation spreading

Accumulated Local Effects (ALE)
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Conclusion:

- Methylation of the TE edges consistently comes as the most important feature with monotonous effect increase

~ TE is methylated on the edges — more likely to spread

Question:
~ What defines the methylation of the TE edges?



Modeling ed
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Back to biology of methylation

- The most important factors for spreading:
- methylation of the TE edges in the CHG and CHH contexts
» % of full length (proxy for the TE age)

« density of CG contexts



Back to biology of methylation

~ The most important factors for spreading: RADM
pathway
- methylation of the TE edges in the CHG and CHH contexts MET1 CMT3
» % of full length (proxy for the TE age) CMT2
- density of CG contexts v ‘/v 14
CG methylation CHG methylation CHH methylation
-~ Hypothesis: the non-canonical RADM machinery is responsible for spreading o o o
- targets all contexts (CG, CHG, CHH) CG CHG CHH
- the only pathway capable of adding DNA methylation de novo GE GDE GDD

g . methylated cytosine (C)
H:A Torc(notg)
D:a TorG (notc)

Erdmann & Picard, PLOS Genetics 2020



-~ The most important factors for spreading:
- methylation of the TE edges in the CHG and CHH contexts
» % of full length (proxy for the TE age)
« density of CG contexts
-~ Hypothesis: the non-canonical RADM machinery is responsible for spreading

- targets all contexts (CG, CHG, CHH)
- the only pathway capable of adding DNA methylation de novo

- Test: mutants of Col-0 strain of A. Thaliana where
different methylation pathways are knocked out

Back to biology of methylation

MET1

CG methylation CHG methylation CHH methylation
? ? ®
CG CHG GHH
GC GDC GDD
O O

g : methylated cytosine (C)
H:A Torc (notG)
D:A TorG (notc)

Erdmann & Picard, PLOS Genetics 2020
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Back to biology of methylation
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Back to biology of methylation
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Back to biology of methylation

> The predictive model is accurate within appropriate range
o Different explainability tools have been explored, and they provide consistent conclusions

~ For spreading, a potential actor (RdADM) is identified



Part lll: associations with gene
expression



From genotype to phenotype
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Tam et al., Nature Reviews Genetics 2019



From epi-genotype to phenotype
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From epi-genotype to phenotype

7T i ¢
- TE 1 .............. TE 3 _Genome 1 Genome-Wide -m

Association Study
moom eg —> —
—— TE 1 TE 2 TE3 —Genome 2 M

3 groups:

00 eoe 00 = absent
| | I 11 10 = present and not methylated (< 5%)
—— TE 1 TE2 [— e —Genome 3 |11 =present and methylated (> 5%)

Kruskal-Wallis test (instead of t-test)




From epi-genotype to phenotype
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3 groups:
00 eoe 00 = absent
| | I 11 10 = present and not methylated (< 5%)
—— TE 1 TE2 [— e —Genome 3 |11 =present and methylated (> 5%)

Kruskal-Wallis test (instead of t-test)

Setting:
Genotypes: 50 genomes * 9.557 mTIPs

Phenotypes: 37k genes (including alternatively spliced)
Standard GWAS pipeline (quality controls, *statistical testing, Bonferroni corrections)



From epi-genotype to phenotype

T * 9
- TE 1 .............. TE 3 _Genome 1 Genome-Wide -m
Association Study
moom eg —> —
—— TE 1 TE 2 TE3 —Genome 2

3 groups:
00 eoe 00 = absent
| | I 11 10 = present and not methylated (< 5%)
—— TE 1 TE2 [— e —Genome 3 |11 =present and methylated (> 5%)

Kruskal-Wallis test (instead of t-test)

Setting:
Genotypes: 50 genomes * 9.557 mTIPs

Phenotypes: 37k genes (including alternatively spliced)
Standard GWAS pipeline (quality controls, *statistical testing, Bonferroni corrections)

Findings:
All (cis + trans) associations: 1.054 mTIPs for 1.091 genes (corrected by Ntips*Ngenes)
Cis-associations (<1.500 bp distance): 457 mTIPs for 633 genes [most are not found with SNPs]



From epi-genotype to phenotype
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From epi-genotype to phenotype

Confirmed
spreader

Examples of cis- effects:

Inside gene

P_tip P_meth TIP Chr start end Distance from gene P_tip P_meth TIP Chr start

2780 0.516462 0.000002 fixed.DEL6462 Chr3 9783357 NaN 535 0.000068 0.002327 IP_Her12.svim_asm.DEL.774 Chr2 15110051 15110322.0 @
fixed.DEL6462 (0.0 bp away from AT3G26612) IP_ Her1l2.svim _asm.DEL.774 (170.0 bp away from AT2G35980)
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*Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein family



From epi-genotype to phenotype

Examples of cis- effects:

Confirmed

Inside gene
9 spreader

P_tip P_meth TIP Chr start end Distance from gene P_tip P_meth TIP Chr start m gene
2780 0.516462 0.000002 fixed.DEL6462 Chr3 9783357 NaN 535 0.000068 0.002327 IP_Her12.svim_asm.DEL.774 Chr2 15110051 15110322.0 @
fixed.DEL6462 (0.0 bp away from AT3G26612) IP_ Herl2.svim_asm.DEL.774 (170.0 bp away from AT2G35980)
— 175 o E—
C 400 — - § O O
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*Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein family

For trans- effects:
Future work: extending and fine-tuning GWAS signals with gene networks



Conclusions




Conclusions

~ Pipeline for precise TIP annotation (genotyping + positions)

-~ Unique dataset: fully annotated for TIPs, genes, and methylation

- Potential evidence of (a) secondary demethylation, and (b) remaining spreading in old decayed TEs
~ Significant part of methylation may be explained from a TE sequence

~ But, there are exceptions in both directions

~ An example of the workflow:

biological phenomenon — machine learning model — explanations — real biological mechanisms

- Genome-wide association studies may be improved by including TIP and methylation data
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