
Autoreplicative Random Forests

for missing value imputation

Ekaterina Antonenko
Kortrijk, Belgium, February 13, 2023

Laboratoire d’informatique, École Polytechnique, IP Paris

DigitalentLab, MIA, Moteurs d’Intelligence Artificielle

1



Missing data

Why is data missing?

• Errors in sensors

• Human factor (reluctance to answer particular questions)

• Combining different studies

• ...

Why to impute the missing data?

• Most off-the-shelf statistical and machine learning methods cannot handle

missing values

• Considering only instances with complete information can lead to a loss of

necessary information and can yield a very poor or even empty dataset

• Missing data itself might be of interest

Types of missingness

• Missing Completely at Random (MCAR): entirely independently of feature

values

• Missing at Random (MAR): depends only on the observed feature values

• Missing Not at Random (MNAR): depends on both the observed and the

unobserved feature values

2



Missing data

Why is data missing?

• Errors in sensors

• Human factor (reluctance to answer particular questions)

• Combining different studies

• ...

Why to impute the missing data?

• Most off-the-shelf statistical and machine learning methods cannot handle

missing values

• Considering only instances with complete information can lead to a loss of

necessary information and can yield a very poor or even empty dataset

• Missing data itself might be of interest

Types of missingness

• Missing Completely at Random (MCAR): entirely independently of feature

values

• Missing at Random (MAR): depends only on the observed feature values

• Missing Not at Random (MNAR): depends on both the observed and the

unobserved feature values

2



Missing data

Why is data missing?

• Errors in sensors

• Human factor (reluctance to answer particular questions)

• Combining different studies

• ...

Why to impute the missing data?

• Most off-the-shelf statistical and machine learning methods cannot handle

missing values

• Considering only instances with complete information can lead to a loss of

necessary information and can yield a very poor or even empty dataset

• Missing data itself might be of interest

Types of missingness

• Missing Completely at Random (MCAR): entirely independently of feature

values

• Missing at Random (MAR): depends only on the observed feature values

• Missing Not at Random (MNAR): depends on both the observed and the

unobserved feature values
2



Imputation methods

• Multiple Imputation by Chained Equations (MICE)

· first, imputes randomly

· then iteratively models each feature by all other features

• Autoencoders

· are neural networks with an output equal to the input

· model hidden structure

· are able to “denoise” data

· require complete data for training

• PCA transformation

· is essentially similar to Autoencoders with one hidden layer and linear

activation function

Our contribution:

• framework unifying the methods above

• code implementation of the framework

• new methodology: Autoreplicative Random Forests (ARF)

3



Imputation methods

• Multiple Imputation by Chained Equations (MICE)

· first, imputes randomly

· then iteratively models each feature by all other features

• Autoencoders

· are neural networks with an output equal to the input

· model hidden structure

· are able to “denoise” data

· require complete data for training

• PCA transformation

· is essentially similar to Autoencoders with one hidden layer and linear

activation function

Our contribution:

• framework unifying the methods above

• code implementation of the framework

• new methodology: Autoreplicative Random Forests (ARF)
3



Procedural and Iterative

Imputation



Framework

Iterative: first, impute randomly; then update iteratively

Procedural: train on complete instances; predict for incomplete instances

Iterative Procedural

Single-target MICE

Autoencoders

Autoencoders

Multi-target

PCA

PCA

ARF ARF

4



Framework

Iterative: first, impute randomly; then update iteratively

Procedural: train on complete instances; predict for incomplete instances

Iterative Procedural

Single-target MICE

Autoencoders Autoencoders

Multi-target PCA PCA

ARF ARF

4



Framework

Iterative: first, impute randomly; then update iteratively

Procedural: train on complete instances; predict for incomplete instances

Iterative Procedural

Single-target MICE

Autoencoders Autoencoders

Multi-target PCA PCA

ARF ARF

4



Procedural models

One procedure:

• Train a [multi-target] model on complete instances

• Use the fitted model to predict on instances containing missing

values

• Correct observed values if changed

1: procedure Procedural Imputation(Xna)

2: Xtrain ← Xcomplete ▷ Select complete cases for training

3: X̃train ← Xtrain corrupted with missing values ▷ Uniformly distributed, %

of m.v. calculated from

Xmissing

4: Xtest ← Xmissing

5: Fit model on (X̃train,Xtrain)

6: Xpred ← replace m.v. with predictions of fitted model on Xtest

NB: needs enough complete data to train a reliable model

5



Procedural models

One procedure:

• Train a [multi-target] model on complete instances

• Use the fitted model to predict on instances containing missing

values

• Correct observed values if changed

1: procedure Procedural Imputation(Xna)

2: Xtrain ← Xcomplete ▷ Select complete cases for training

3: X̃train ← Xtrain corrupted with missing values ▷ Uniformly distributed, %

of m.v. calculated from

Xmissing

4: Xtest ← Xmissing

5: Fit model on (X̃train,Xtrain)

6: Xpred ← replace m.v. with predictions of fitted model on Xtest

NB: needs enough complete data to train a reliable model

5



Iterative model

First, impute randomly

Then, iteratively until convergence is reached:

• Train a [multi-target] model on previous imputation

• Use the fitted model to predict on all instances

• Correct observed values if changed

1: procedure Iterative Imputation(Xna, α)

2: X 0
imp ← random imputation of m.v. in Xna

3: while ∆imp > α do

4: Fit model on (Xna,X
n−1
imp )

5: X n
imp ← replace m.v. with predictions of fitted model on Xna

6: ∆imp ← distance [accuracy] between X n
imp and X n−1

imp

6



Autoencoders =⇒ Autoreplicative Random Forests

Autoencoder Denoising Autoencoder

Autoreplicator

Why to use multi-label methods?

• fewer parameters than neural networks (good for low-sampled data)

• no need for hidden layers

Which methods?

• Decision Trees, Random Forests, Extra Trees

• Classifier Chains, Multilabel k Nearest Neighbours, Random k-Labelsets,

Conditional Dependency Networks, etc.

7



Autoencoders =⇒ Autoreplicative Random Forests

Autoencoder Denoising Autoencoder Autoreplicator

Why to use multi-label methods?

• fewer parameters than neural networks (good for low-sampled data)

• no need for hidden layers

Which methods?

• Decision Trees, Random Forests, Extra Trees

• Classifier Chains, Multilabel k Nearest Neighbours, Random k-Labelsets,

Conditional Dependency Networks, etc.

7



Autoencoders =⇒ Autoreplicative Random Forests

Autoencoder Denoising Autoencoder Autoreplicator

Why to use multi-label methods?

• fewer parameters than neural networks (good for low-sampled data)

• no need for hidden layers

Which methods?

• Decision Trees, Random Forests, Extra Trees

• Classifier Chains, Multilabel k Nearest Neighbours, Random k-Labelsets,

Conditional Dependency Networks, etc.

7



Autoencoders =⇒ Autoreplicative Random Forests

Autoencoder Denoising Autoencoder Autoreplicator

Why to use multi-label methods?

• fewer parameters than neural networks (good for low-sampled data)

• no need for hidden layers

Which methods?

• Decision Trees, Random Forests, Extra Trees

• Classifier Chains, Multilabel k Nearest Neighbours, Random k-Labelsets,

Conditional Dependency Networks, etc.

7



Results: iterative ARF do converge

Imputation via Iterative Random Forests converges after several iterations

8



Accuracy of imputation

MVR 0.01 0.05 0.1 0.2 0.3 0.01 0.05 0.1 0.2 0.3 0.01 0.05 0.1 0.2 0.3

Mushroom [8,124 x 22] Soybean [307 x 35] Tumor [339 x 17]

Complete c. 80.1% 32.3% 10.1% 0.7% 0.04% 69.7% 13.7% 1.0% 0% 0% 83.8% 38.9% 15.0% 1.2% 0.3%

MICE 0.658 0.715 0.741 0.769 0.777 0.884 0.884 0.879 0.867 0.850 0.761 0.768 0.748 0.754 0.735

itARF 0.730 0.740 0.747 0.734 0.707 0.824 0.850 0.832 0.815 0.789 0.652 0.672 0.645 0.660 0.620

pARF 0.748 0.774 0.761 0.671 0.478 0.804 0.779 0.600 – – 0.639 0.696 0.650 0.694 0.635

itAE 0.608 0.618 0.604 0.584 0.569 0.653 0.607 0.608 0.584 0.590 0.721 0.732 0.692 0.711 0.710

pAE 0.580 0.494 0.491 0.538 0.428 0.653 0.622 0.594 – – 0.721 0.718 0.692 0.690 0.497

itPCA 0.604 0.627 0.622 0.623 0.618 0.667 0.692 0.671 0.646 0.603 0.721 0.740 0.692 0.711 0.710

pPCA 0.600 0.587 0.578 0.537 0.441 0.655 0.639 0.620 – – 0.721 0.671 0.688 0.626 0.411

Votes [435 x 16] Lymphography [148 x 18] Financial Survey [6,394 x 212]

Complete cases 85.3% 42.2% 18.5% 1.3% 0.4% 81.8% 40.5% 14.9% 2.7% 0% 11.8% 0% 0% 0% 0%

MICE 0.768 0.795 0.771 0.768 0.782 0.750 0.679 0.665 0.648 0.651 – – – – –

itARF 0.719 0.726 0.728 0.723 0.718 0.714 0.639 0.638 0.628 0.600 0.684 0.677 0.676 0.667 0.661

pARF 0.730 0.758 0.756 0.522 0.495 0.636 0.647 0.604 0.608 – 0.633 – – – –

itAE 0.697 0.563 0.602 0.578 0.570 0.700 0.474 0.485 0.448 0.487 0.626 0.617 0.616 0.604 0.596

pAE 0.638 0.546 0.600 0.524 0.488 0.679 0.514 0.563 0.611 – 0.313 – – – –

itPCA 0.665 0.583 0.567 0.572 0.570 0.686 0.513 0.477 0.468 0.484 0.653 0.645 0.645 0.634 0.627

pPCA 0.595 0.499 0.567 0.507 0.453 0.693 0.536 0.562 0.502 – 0.299 – – – –

• Procedural ARFs: may be powerful when enough complete instances

• MICE: as powerful as computationally expensive

• Iterative ARFs: still powerful + significantly quicker

9



Time complexity

In theory:

· p = number of features

· niter = number of iterations

itARF pARF MICE

O(niter · p) O(p) O(niter · p2)

In practice:

10



Time complexity

In theory:

· p = number of features

· niter = number of iterations

itARF pARF MICE

O(niter · p) O(p) O(niter · p2)

In practice:

10



Probabilistic Autoreplicative Random Forests

Extension of iterative Autoreplicative Random Forests:

• First, randomly impute with probabilities

• In each iteration:

· M imputations are sampled from the previous distribution

· M trees of a Random Forest are trained on different imputations

· The Random Forest produces one probabilistic imputation

1: procedure Probabilistic Iterative Imputation(Xna, α)

2: H0 ← {h01, h02, . . . , h0M} ▷ Random Forest of M trees

3: p0imp ← random imputation with probabilities from {U[0,1]}
4: while ∆imp > α do

5: Hn ← {hn1 , hn2 , . . . , hnM} ▷ Random Forest of M trees

6: for hnm ∈ Hn do

7: X n,m
imp ∼ pn−1

imp ▷ Impute by sampling from distributions

8: Fit a tree hnm on (Xna,X
n,m
imp )

9: pnimp ← probabilities provided by fitted Hn

10: ∆imp ← distance between pnimp and pn−1
imp

11



Chains of Autoreplicative

Random Forests



Usecase: Single Nucleotide Polymorphisms (SNP)

Copyright: Scientific DX GmbH, 2020

• Categorical: 0 (dominant-dominant), 1 (dominant-mutant), 2 (mutant-mutant)

• High-dimensional (105 − 106) and low-sampled (102 − 103)

• Ordering is important

• Missing values occur due to external mechanisms =⇒ MCAR

Methods:

• reference-based (state-of-the-art for human data)

• reference-free (when reference panels are not available).

Other possible examples: gene expression arrays, classification problems in astronomy,

tool development for finance data, and weather prediction.

12



Usecase: Single Nucleotide Polymorphisms (SNP)

Copyright: Scientific DX GmbH, 2020

• Categorical: 0 (dominant-dominant), 1 (dominant-mutant), 2 (mutant-mutant)

• High-dimensional (105 − 106) and low-sampled (102 − 103)

• Ordering is important

• Missing values occur due to external mechanisms =⇒ MCAR

Methods:

• reference-based (state-of-the-art for human data)

• reference-free (when reference panels are not available).

Other possible examples: gene expression arrays, classification problems in astronomy,

tool development for finance data, and weather prediction.

12



Usecase: Single Nucleotide Polymorphisms (SNP)

Copyright: Scientific DX GmbH, 2020

• Categorical: 0 (dominant-dominant), 1 (dominant-mutant), 2 (mutant-mutant)

• High-dimensional (105 − 106) and low-sampled (102 − 103)

• Ordering is important

• Missing values occur due to external mechanisms =⇒ MCAR

Methods:

• reference-based (state-of-the-art for human data)

• reference-free (when reference panels are not available).

Other possible examples: gene expression arrays, classification problems in astronomy,

tool development for finance data, and weather prediction. 12



Chains of Autoreplicative Random Forests

• Procedural approach:

one window of size ∆ =

complete instances +

instances with missing values

• Chain of windows:

on each step, stacking ν

windows with already

imputed values as additional

features

• Ensemble of chains:

one forward chain, one

backward chain, several

random chains

13



Gridsearch for parameters ∆ and ν

1% 5% 10% 20% 30%

Lighter color / higher accuracy

∆: bigger fraction of missing values → smaller size of window =⇒
can be estimated theoretically, no need for search

ν: may depend on problem

14



Accuracy

0.01 0.05 0.1 0.2 0.3 0.01 0.05 0.1 0.2 0.3

Maize [247 x 44,729] Eucalyptus [970 x 33,398]

ChARF 0.952 0.935 0.916 0.882 0.845 0.970 0.950 0.926 0.866 0.810

kNN (5/10) 0.803 0.802 0.801 0.798 0.794 0.851 0.849 0.847 0.843 0.839

mode 0.727 0.727 0.726 0.727 0.726 0.725 0.732 0.731 0.730 0.729

SVD (50/500) 0.647 0.648 0.645 0.643 0.636 0.788 0.788 0.788 0.785 0.780

MICE – – – – – – – – – –

Colorado Beetle [188 x 34,186] Arabica Coffee [596 x 4,666]

ChARF 0.835 0.824 0.818 0.805 0.792 0.897 0.886 0.878 0.866 0.854

kNN (50/10) 0.765 0.763 0.765 0.765 0.764 0.867 0.866 0.866 0.865 0.864

mode 0.761 0.760 0.762 0.761 0.761 0.807 0.804 0.805 0.805 0.804

SVD (50/100) 0.740 0.737 0.737 0.735 0.734 0.693 0.694 0.696 0.692 0.690

MICE – – – – – 0.757 0.741 0.724 0.689 0.664

Wheat [388 x 9,763] Coffea Canephora [119 x 45,748]

ChARF 0.821 0.808 0.795 0.777 0.762 0.799 0.781 0.761 0.731 0.717

kNN (10/10) 0.823 0.819 0.818 0.815 0.811 0.737 0.739 0.737 0.734 0.731

mode 0.729 0.727 0.729 0.729 0.727 0.691 0.693 0.692 0.692 0.691

SVD (200/50) 0.622 0.618 0.609 0.600 0.594 0.456 0.453 0.450 0.449 0.450

MICE 0.641 0.635 0.621 0.585 0.545 – – – – –

• MICE: run with 10 neighbors for each feature, still worked only for smaller data

• Autoencoders: not taken into comparison (no complete data for training)

• Well-known methods for SNP imputation: k Nearest Neighbors, Single Value

Decomposition 15



Conclusions

• Unusual and effective usage of multi-label methods, e.g. Random

Forests:

· autoreplication

· missing value imputation

· denoising

· outlier detection

• We show how probabilistic training can be easily added to the model

• ARF vs MICE: high quality and much faster

• ARF vs Autoencoders:

· no need for one-hot encoding =⇒ less features.

· lower time complexity =⇒ works for high-dimensional datasets

· no need for complete data

16



Conclusions

• Unusual and effective usage of multi-label methods, e.g. Random

Forests:

· autoreplication

· missing value imputation

· denoising

· outlier detection

• We show how probabilistic training can be easily added to the model

• ARF vs MICE: high quality and much faster

• ARF vs Autoencoders:

· no need for one-hot encoding =⇒ less features.

· lower time complexity =⇒ works for high-dimensional datasets

· no need for complete data

16



Conclusions

• Unusual and effective usage of multi-label methods, e.g. Random

Forests:

· autoreplication

· missing value imputation

· denoising

· outlier detection

• We show how probabilistic training can be easily added to the model

• ARF vs MICE: high quality and much faster

• ARF vs Autoencoders:

· no need for one-hot encoding =⇒ less features.

· lower time complexity =⇒ works for high-dimensional datasets

· no need for complete data

16



Conclusions

• Unusual and effective usage of multi-label methods, e.g. Random

Forests:

· autoreplication

· missing value imputation

· denoising

· outlier detection

• We show how probabilistic training can be easily added to the model

• ARF vs MICE: high quality and much faster

• ARF vs Autoencoders:

· no need for one-hot encoding =⇒ less features.

· lower time complexity =⇒ works for high-dimensional datasets

· no need for complete data

16



Questions of interest

• Multi-target Random Forests still optimize decomposable metrics

(entropy, gini):

can we model the labels indeed jointly?

• For very wide datasets (> 10, 000 features) multi-target methods are

very memory expensive

• Studies for MAR and MNAR scenarios

• Regression (e.g. gene expression)

17



Questions of interest

• Multi-target Random Forests still optimize decomposable metrics

(entropy, gini):

can we model the labels indeed jointly?

• For very wide datasets (> 10, 000 features) multi-target methods are

very memory expensive

• Studies for MAR and MNAR scenarios

• Regression (e.g. gene expression)

17



Questions of interest

• Multi-target Random Forests still optimize decomposable metrics

(entropy, gini):

can we model the labels indeed jointly?

• For very wide datasets (> 10, 000 features) multi-target methods are

very memory expensive

• Studies for MAR and MNAR scenarios

• Regression (e.g. gene expression)

17



Questions of interest

• Multi-target Random Forests still optimize decomposable metrics

(entropy, gini):

can we model the labels indeed jointly?

• For very wide datasets (> 10, 000 features) multi-target methods are

very memory expensive

• Studies for MAR and MNAR scenarios

• Regression (e.g. gene expression)

17



Thank you!

18


	Procedural and Iterative Imputation
	Chains of Autoreplicative Random Forests

