Autoreplicative Random Forests
for missing value imputation

Ekaterina Antonenko
Kortrijk, Belgium, February 13, 2023

ECOLE
POLYTECHNIQUE

Laboratoire d'informatique, Ecole Polytechnique, IP Paris .';:::'PPARIS

DigitalentLab, MIA, Moteurs d’Intelligence Artificielle

igitalent



Missing data

Why is data missing?

e Errors in sensors

e Human factor (reluctance to answer particular questions)
e Combining different studies

°



Missing data

Why is data missing?

Errors in sensors
Human factor (reluctance to answer particular questions)
Combining different studies

Why to impute the missing data?

Most off-the-shelf statistical and machine learning methods cannot handle
missing values

Considering only instances with complete information can lead to a loss of
necessary information and can yield a very poor or even empty dataset
Missing data itself might be of interest



Missing data

Why is data missing?

e Errors in sensors

e Human factor (reluctance to answer particular questions)
e Combining different studies

°

Why to impute the missing data?

e Most off-the-shelf statistical and machine learning methods cannot handle
missing values

e Considering only instances with complete information can lead to a loss of
necessary information and can yield a very poor or even empty dataset

e Missing data itself might be of interest

Types of missingness

e Missing Completely at Random (MCAR): entirely independently of feature

values
e Missing at Random (MAR): depends only on the observed feature values
e Missing Not at Random (MNAR): depends on both the observed and the
unobserved feature values



Imputation methods

e Multiple Imputation by Chained Equations (MICE)
- first, imputes randomly
- then iteratively models each feature by all other features
e Autoencoders
- are neural networks with an output equal to the input
- model hidden structure
- are able to "denoise” data
require complete data for training
e PCA transformation
- is essentially similar to Autoencoders with one hidden layer and linear
activation function
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- then iteratively models each feature by all other features
e Autoencoders

- are neural networks with an output equal to the input

- model hidden structure

- are able to "denoise” data

- require complete data for training
e PCA transformation

- is essentially similar to Autoencoders with one hidden layer and linear

activation function

Our contribution:

o framework unifying the methods above
e code implementation of the framework

e new methodology: Autoreplicative Random Forests (ARF)
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Procedural models

One procedure:

e Train a [multi-target] model on complete instances

e Use the fitted model to predict on instances containing missing
values

e Correct observed values if changed

1: procedure PROCEDURAL IMPUTATION(Xp,)

2: Xtrain <= Xcomplete > Select complete cases for training

3: Kerain — Xerain corrupted with missing values > Uniformly distributed, %
of m.v. calculated from
Xmissing

4 Xtest +— Xmlssmg

5: Fit model on (Xirain, Xtrain)

6: Xpred < replace m.v. with predictions of fitted model on Xiest
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One procedure:

e Train a [multi-target] model on complete instances

e Use the fitted model to predict on instances containing missing
values

e Correct observed values if changed

1: procedure PROCEDURAL IMPUTATION(Xp,)

2: Xtrain <= Xcomplete > Select complete cases for training

3: Kerain — Xerain corrupted with missing values > Uniformly distributed, %
of m.v. calculated from
Xmissing

4 Xtest +— Xmlssmg

5: Fit model on (Xirain, Xtrain)

6: Xpred < replace m.v. with predictions of fitted model on Xiest

NB: needs enough complete data to train a reliable model



Iterative model

First, impute randomly
Then, iteratively until convergence is reached:
e Train a [multi-target] model on previous imputation

e Use the fitted model to predict on all instances

e Correct observed values if changed

1: procedure ITERATIVE IMPUTATION(Xna, @)
2 XI-(,)np < random imputation of m.v. in Xp,
3 while Aj;,, > o do
. 5 —1
4: Fit model on (X,,a,X,.',;p )
5 Xl.',’np < replace m.v. with predictions of fitted model on Xj,
6 Ajmp < distance [accuracy] between X7 and Xi:‘n_pl




Autoencoders — Autoreplicative Random Forests

H ] e H =
cnmd:rl
a XCOL LT
j
XOOTG s DWWz XCOLLIDK, s> > CCBC 2

Autoencoder Denoising Autoencoder



Autoencoders — Autoreplicative Random Forests

encoder

XCETK s (B W Z

Autoencoder

XOITTITK, s o s 2

Denoising Autoencoder

. reconstruction
XTI -
ﬁ (auto-replicator)

X iy ™ > Nz

Autoreplicator



Autoencoders — Autoreplicative Random Forests

H ecoder HEEEm . reconstruction
1111 -
."'M"I X (auto-replicator)
e XOOI D ﬁ
O
o fmcieal g T XL e fomction o T T Z
XOTITTC ey o ECEEZ XOOTITK, “lay OO Z LX,2)

Autoencoder Denoising Autoencoder Autoreplicator

Why to use multi-label methods?

e fewer parameters than neural networks (good for low-sampled data)

e no need for hidden layers
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Why to use multi-label methods?

e fewer parameters than neural networks (good for low-sampled data)

e no need for hidden layers

Which methods?

o Decision Trees, Random Forests, Extra Trees

e Classifier Chains, Multilabel k Nearest Neighbours, Random k-Labelsets,
Conditional Dependency Networks, etc.



Results: iterative ARF do converge

Imputation via Iterative Random Forests converges after several iterations
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Accuracy of imputation

MVR | 001 005 01 02 03 |00l 005 01 02 03 ]001 005 01 02 03
Mushroom (8,124 x 22] Soybean [307 x 35] Tumor [339 x 17]
Complete c. | 80.1% 32.3% 10.1% 0.7% 0.04% |69.7% 13.7% 1.0% 0% 0% |83.8% 38.9% 150% 12% 0.3%
MICE 0.658 0.715 0.741 0.769 0.777 | 0.884 0.884 0.879 0.867 0.850 [ 0.761 0.768 0.748 0.754 0.735
itARF 0730 0.740 0.747 0.734 0.707 | 0.824 0.850 0.832 0.815 0.789 | 0.652 0.672 0.645 0.660 0.620
pARF 0.748 0.774 0.761 0.671 0.478 | 0.804 0.779 0.600 - - | 0639 0696 0650 0.694 0.635
itAE 0.608 0.618 0.604 0.584 0.569 | 0.653 0.607 0.608 0.584 0.590 | 0.721 0.732 0.692 0.711 0.710
pAE 0.580 0.494 0491 0538 0428 | 0.653 0.622 0594 - - |0721 0718 0692 0.690 0.497
itPCA 0.604 0.627 0.622 0.623 0.618 | 0.667 0.692 0.671 0.646 0.603 | 0.721 0.740 0.692 0.711 0.710
pPCA 0.600 0.587 0.578 0.537 0.441 | 0.655 0.639 0.620 - - | 0721 0671 0688 0.626 0.411

Votes [435 x 16] Lymphography [148 x 18] Financial Survey [6,394 x 212]
Complete cases | 85.3% 422% 18.5% 1.3% 0.4% |81.8% 405% 14.9% 27% 0% |118% 0% 0% 0% 0%

MICE 0.768 0.795 0.771 0.768 0.782 | 0.750 0.679 0.665 0.648 0.651| - - - - -
itARF 0719 0726 0.728 0.723 0.718 | 0.714 0.630 0.638 0.628 0.600 | 0.684 0.677 0.676 0.667 0.661
pARF 0730 0.758 0.756 0522 0.495 | 0.636 0.647 0.604 0.608 - |0633 - - - -
itAE 0.607 0.563 0.602 0.578 0.570 | 0.700 0.474 0.485 0.448 0.487 | 0.626 0.617 0.616 0.604 0.596
pAE 0.638 0.546 0.600 0.524 0.488 | 0.679 0.514 0.563 0.611 - |[0.313 - - - -
itPCA 0.665 0.583 0567 0.572 0570 | 0.686 0.513 0.477 0.468 0.484 | 0.653 0.645 0.645 0.634 0.627
pPCA 0.505 0.499 0.567 0.507 0.453 | 0.693 0.536 0.562 0.502 - |0.299 - - - -

e Procedural ARFs: may be powerful when enough complete instances
e MICE: as powerful as computationally expensive
e |terative ARFs: still powerful + significantly quicker



Time complexity

In theory:

- p = number of features
- Njter = number of iterations
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O(niter - ) O(p)  O(niter - P?)
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Time complexity

In theory:
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- Njter = number of iterations

itARF pARF MICE

O(niter - ) O(p)  O(niter - P?)

In practice:
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Probabilistic Autoreplicative Random Forests

Extension of iterative Autoreplicative Random Forests:

e First, randomly impute with probabilities

e In each iteration:
- M imputations are sampled from the previous distribution
- M trees of a Random Forest are trained on different imputations
- The Random Forest produces one probabilistic imputation

1: procedure PROBABILISTIC ITERATIVE IMPUTATION(Xna, a)

2 HO «— {h, 19, ..., 0} > Random Forest of M trees
3 p?mp < random imputation with probabilities from {lo 11}

4 while Aj;,, > o do

5: H" < {h{,h3,...,h},} > Random Forest of M trees
6 for hl, € H" do

7 Xi';;,g’ ~ p,'.:;PI > Impute by sampling from distributions
8 Fit a tree h], on (X,,a,XI.:j,Z)

9 pﬁnp < probabilities provided by fitted #"

10: Ajmp + distance between pl-”mp and p,'.;;pl

11



Chains of Autoreplicative
Random Forests




Usecase: Single Nucleotide Polymorphisms (SNP)
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Categorical: 0 (dominant-dominant), 1 (dominant-mutant), 2 (mutant-mutant)
High-dimensional (10° — 10°) and low-sampled (102 — 10%)
Ordering is important

Missing values occur due to external mechanisms —> MCAR
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e Categorical: 0 (dominant-dominant), 1 (dominant-mutant), 2 (mutant-mutant)
e High-dimensional (10° — 10°) and low-sampled (102 — 10%)
e Ordering is important

e Missing values occur due to external mechanisms — MCAR

Methods:

e reference-based (state-of-the-art for human data)
e reference-free (when reference panels are not available).

Other possible examples: gene expression arrays, classification problems in astronomy,

tool development for finance data, and weather prediction. 12



Chains of Autoreplicative Random Forests

e Procedural approach:
one window of size A =
complete instances +
instances with missing values

e Chain of windows:

on each step, stacking v
windows with already

imputed values as additional
features

e Ensemble of chains:

one forward chain, one

backward chain, several

random chains

13



Gridsearch for parameters A and v
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Lighter color / higher accuracy

A: bigger fraction of missing values — smaller size of window —-
can be estimated theoretically, no need for search

v: may depend on problem
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Accuracy

‘ 0.01  0.05 0.1 0.2 0.3 0.01  0.05 0.1 0.2 0.3

‘ Maize [247 x 44,729] Eucalyptus [970 x 33,398]
ChARF 0.952 0.935 0.916 0.882 0.845| 0.970 0.950 0.926 0.866 0.810
kNN (5/10) 0.803 0.802 0.801 0.798 0.794 | 0.851 0.849 0.847 0.843 0.839
mode 0.727 0.727 0.726 0.727 0.726 | 0.725 0.732 0.731 0.730 0.729
SVD (50/500) | 0.647 0.648 0.645 0.643 0.636 | 0.788 0.788 0.788 0.785 0.780
MICE = = = = = = = = = =
‘ Colorado Beetle [188 x 34,186] Arabica Coffee [596 x 4,666]
ChARF 0.835 0.824 0.818 0.805 0.792 | 0.897 0.886 0.878 0.866 0.854
kNN (50/10) | 0.765 0.763 0.765 0.765 0.764 | 0.867 0.866 0.866 0.865 0.864
mode 0.761 0.760 0.762 0.761 0.761 | 0.807 0.804 0.805 0.805 0.804
SVD (50/100) | 0.740 0.737 0.737 0.735 0.734 | 0.693 0.694 0.696 0.692 0.690
MICE = = = = = 0.757 0.741 0.724 0.689 0.664
‘ Wheat [388 x 9,763] Coffea Canephora [119 x 45,748]
ChARF 0.821 0.808 0.795 0.777 0.762 | 0.799 0.781 0.761 0.731 0.717
kNN (10/10) | 0.823 0.819 0.818 0.815 0.811 | 0.737 0.739 0.737 0.734 0.731
mode 0.729 0.727 0.729 0.729 0.727 | 0.691 0.693 0.692 0.692 0.691
SVD (200/50) | 0.622 0.618 0.609 0.600 0.594 | 0.456 0.453 0.450 0.449 0.450
MICE 0.641 0.635 0.621 0.585 0.545 = = = = -

e MICE: run with 10 neighbors for each feature, still worked only for smaller data

e Autoencoders: not taken into comparison (no complete data for training)

e Well-known methods for SNP imputation: k Nearest Neighbors, Single Value
Decomposition 15



Conclusions

e Unusual and effective usage of multi-label methods, e.g. Random
Forests:

- autoreplication

- missing value imputation
- denoising

- outlier detection
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Conclusions

Unusual and effective usage of multi-label methods, e.g. Random
Forests:

- autoreplication

- missing value imputation
- denoising

- outlier detection

We show how probabilistic training can be easily added to the model
ARF vs MICE: high quality and much faster
ARF vs Autoencoders:

- no need for one-hot encoding = less features.
- lower time complexity = works for high-dimensional datasets

- no need for complete data

16



Questions of interest

e Multi-target Random Forests still optimize decomposable metrics

(entropy, gini):
can we model the labels indeed jointly?
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Questions of interest

e Multi-target Random Forests still optimize decomposable metrics

(entropy, gini):
can we model the labels indeed jointly?

e For very wide datasets (> 10,000 features) multi-target methods are
very memory expensive

e Studies for MAR and MNAR scenarios

e Regression (e.g. gene expression)
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