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Transposable Elements

~ Transposable Elements (TEs, “jumping genes”) are an important source of mutations
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~ TEs transpose by cut-and-paste or copy-and-paste mechanisms

Transposable Elements

< Transposable Elements (TEs, “jJumping genes”) are an important source of mutations

~ BUT: most TEs are degraded and do not transpose

Mutations may be deleterious...
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—;W

Sbei

—m

Sbei

DNA transposon

mobilization

Insertion

] ]

...yet sometimes adaptive

Biston betularia

carbonaria

Biston betularia
typica

Kettelwell. Heredity 1956; van’t Hof et al. Nature 2016

VARV AR AR AN A 4

Cortex Cortex

VAN AV AR AV AR 4

DNA transposon



Transposable Elements
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Epigenetic Regulation of Transposable Elements

NH, NH,
H
DNA methylation: N~ ~O N~ ~O
H H
< iIs an essential regulatory mechanism of TEs activity cytosine metthyl_ated
cytosine

< targets CG / CHG / CHH in plants
[H = anything besides G]

~ affects TE / gene expression (silencing)
~ may spread to flanking regions

~ example:

methylated promoter =— no RNA —
—> no protein = no function
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DNA methylation: mko Hko
< Is an essential regulatory mechanism of TEs activity Cytosine mf;poxgﬁ]t:d
< targets CG / CHG / CHH in plants
[H = anything besides G] spontaneous epimutation
| }
~ affects TE / gene expression (silencing) - %4
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~ may spread to flanking regions COPIA COPIA

~ example:

methylated promoter =— no RNA —
—> no protein = no function

Manning et al., Nat Genet 2006

—> perfect Mendelian segregation though no DNA changes observed



Our data: Arabidopsis Thaliana

e 89 strains from throughout the world, sequenced with ultra-long reads
(Nanopore)
e TE annotation + Full methylation profiles (for all contexts CG, CHG, CHH)

e Gene expression data

Kawakatsu et al. Cell 2016, Alonso-Blanco et al. Cell 2016, Quadrana et al. eLife 2016



From genotype to phenotype
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Model:
Random Forest



Prediction of methylation spreading
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Model:
Random Forest

Features:

 TE (length, distance to pericentromere, superfamily,
insertion frequency, divergence, if inside a gene)

- Nearest 2 genes (length, distance, relative direction)

- Methylation in CG, CHG, CHH contexts (average
genome-wide, TE, on the ends of TE, previous
windows)

» Densities of CG, CHG, CHH contexts



Prediction of methylation spreading

0.8

00 100 bp 100 bp 100 bp
| 1 1 0O® €0 €0 00O g
_ [ 1]
I \ J IJ 0.2
' !
\
MOde|: 0.10

Random Forest

RMSE Score

Features:

0.00
Q

,\Q

Qs

 TE (length, distance to pericentromere, superfamily,
insertion frequency, divergence, if inside a gene)

- Nearest 2 genes (length, distance, relative direction)

- Methylation in CG, CHG, CHH contexts (average
genome-wide, TE, on the ends of TE, previous

50000

40000

06

30000

Predicted
Frequency

windows)
« Densities of CG, CHG, CHH contexts

20000

10000 | ‘
0 _-.lII Ill.---_

0.0 0.2 0.4 06 08 -06 -04 -0.2 0.0 02 04 06 0.8

Actual Residuals

02

0.0



Prediction of methylation spreading

> The model predicts well, but
which features define
methylation level?



Prediction of methylation spreading

~ The model predicts well, but

which features define
methylation level?

~ Some features are highly

correlated = hard to distinguish

between them
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Prediction of methylation spreading

Impurity-based feature importances
*10 independent runs with different random seeds
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Prediction of methylation spreading

Impurity-based feature importances
*10 independent runs with different random seeds
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Prediction of methylation spreading

Impurity-based feature importances
*10 independent runs with different random seeds
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Prediction of methylation spreading

Accumulated Local Effects (ALE)
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Accumulated Local Effects (ALE)
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Conclusion:

~ Methylation of the TE inside ends consistently comes as the most important feature with monotonous effect increase

~ TE is methylated on the ends — more likely to spread



Prediction of methylation spreading

Accumulated Local Effects (ALE)
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Conclusion:

- Methylation of the TE inside ends consistently comes as the most important feature with monotonous effect increase

~ TE is methylated on the ends — more likely to spread

Question:
- What defines the methylation of the TE inside ends?



Prediction of inside methylation

Features:

 TE (length, distance to pericentromere, superfamily,
insertion frequency, divergence, if inside a gene)

- Nearest 2 genes (length, distance, relative direction)

- Methylation in CG, CHG, CHH contexts (average
genome-wide)

» Densities of CG, CHG, CHH contexts
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Prediction of inside methylation

Impurity-based feature importances
*10 independent runs with different random seeds
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Accumulated Local Effects
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Accumulated Local Effects
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Conclusions

~ Length of TE is unlikely to be a driving factor

(rather a confounder)

~ Insertion frequency:

Rare (= new) TEs are targeted by methylation machinery

~ Distance to pericentromere:

More distant TEs are more likely to be targeted
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- methylation of insides in the CHG and CHH contexts
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- Hypothesis: the RADM machinery is responsible for spreading
- targets all contexts

- the only pathway capable of adding DNA methylation de novo
- targets rather chromosome arms
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Conclusions

> An example of the workflow:

biological phenomenon =— machine learning model — explanations — real biological mechanisms

~ Different explainability tools have been explored, and they provide consistent conclusions

> Potential actor (RADM) is identified

~ We understand better one of the factors to explain GWAS signals
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