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Spécialité de doctorat: Informatique
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Abstract

A multi-output machine learning predictive task is characterized by the

need to predict multiple numerical or categorical outputs for each instance.

While a straightforward approach involves modeling each output separately,

employing joint modeling techniques often enhances prediction performance

and yields superior results due to analyzing and exploiting the interdepen-

dencies between the various target variables.

In the context of regression, when addressing joint modeling, several chal-

lenges emerge. One common issue is that many methods tend to assume a

single-modal Gaussian distribution, while the ground-truth target distribu-

tion does not necessarily correspond to this assumption. To tackle this is-

sue, we propose a novel solution based on Regressor Chains, which are basi-

cally chains of single-output models incorporating already predicted targets

to the modeling of the subsequent ones. The proposed approach, Multi-

Modal Ensemble of Regressor Chains, offers a mechanism to effectively

handle multi-modal target distributions, enhancing the model’s predictive

capabilities while maintaining flexibility with regard to base estimators of

Regressor Chains.

Second, we study multi-target regression in the scenarios when some of

the target values are known in the prediction phase and can be leveraged

to predict the unknown ones without re-training the model. This may be

the case if, for example, the training data is restricted or not available
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anymore. To this end, we develop an approach for backward inference in

Regressor Chains which incorporates the information about the fixed values

and includes them into the joint modeling of the other values regardless of

the chain order and positioning of the known targets in it. Additionally,

the proposed solution provides the distribution for each instance instead of

a mean value.

In the classification domain, we introduce a novel application of multi-

output Random Forests. We propose using them in an Autoreplicative

fashion to perform missing value imputation or, in other words, denoise

the data. The proposed method is evaluated across a range of various

datasets, demonstrating its efficacy. Moreover, we develop a general frame-

work that unifies different imputation methods and makes it possible to

select a method by tuning hyperparameters. We make an important dis-

tinction by telling apart the procedural and iterative methods. The pro-

cedural methods are optimized on the observed values and impute missing

ones only once. Oppositely, the iterative methods update imputed values

iteratively in cycles until convergence criteria are reached. We add the

newly proposed method, Autoreplicative Random Forests to the general

framework both in procedural and iterative versions. Additionally, we ex-

tend it with distributional iterative Autoreplicative Random Forests that

incorporate the model’s confidence of imputation on each iteration to the

modeling in subsequent cycles and output a distribution for each imputed

value in the end.

Finally, we extend the applicability of Autoreplicative Random Forests to
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genomic high-dimensional data, namely Single Nucleotide Polymorphisms

datasets, by imputing missing values in separate windows and incorpo-

rating the processed windows into the modeling of the subsequent ones

in a chained fashion. Through a comprehensive experimental analysis, our

approach showcases competitive and even outperforming results when com-

pared to other reference-free methods.



Résumé en Français

Une tâche prédictive de l’apprentissage automatique à sorties multiples

se caractérise par le besoin de prédire plusieurs sorties numériques ou

catégorielles pour chaque instance. Alors qu’une approche directe con-

siste à modéliser chaque sortie séparément, l’utilisation de techniques de

modélisation conjointe améliore souvent les performances de prédiction et

produit des résultats supérieurs en raison de l’analyse et de l’exploitation

des interdépendances entre les différentes variables cibles.

Dans le contexte de la régression, lorsqu’il s’agit de la modélisation con-

jointe, plusieurs défis émergent. Premièrement, un problème courant est

que de nombreuses méthodes ont tendance à supposer une distribution

gaussienne unimodale, alors que la distribution cible réelle ne correspond

pas nécessairement à cette hypothèse. Pour résoudre ce problème, nous

proposons une nouvelle solution basée sur les châınes de régresseurs, qui

sont essentiellement des châınes de modèles à une seule sortie incorporant

les cibles déjà prédites comme variables d’entrée dans la modélisation des

cibles suivantes.

Nous proposons l’ensemble multi-modal de châınes de régresseurs offrant un

mécanisme pour gérer efficacement les distributions cibles multimodales et

qui améliorent les capacités de la prédiction du modèle, tout en maintenant

la flexibilité des estimateurs de base composant les châınes de régresseurs.
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Deuxièmement, nous étudions la régression multi-cibles dans les scénarios

où certaines des valeurs cibles sont connues dans la phase de prédiction et

qui sont exploitées pour prédire les valeurs inconnues sans ré-entrâıner le

modèle. Cela est interessant si, par exemple, les données d’entrâınement

sont restreintes ou ne sont plus disponibles.

À cette fin, nous développons une approche pour l’inférence régressive

intègrant les informations sur les valeurs connues dans la modélisation con-

jointe des autres inconnues, indépendamment de l’ordre des châınes et de

la position des cibles connues dans celle-ci. De plus, la solution proposée

fournit la distribution pour chaque instance au lieu d’une valeur moyenne.

Dans le domaine de la classification, nous introduisons une nouvelle applica-

tion des forêts aléatoires à sorties multiples. Nous proposons de les utiliser

de manière autoréplicative pour effectuer l’imputation des valeurs man-

quantes ou, en d’autres termes, pour débruiter les données. La méthode

proposée est évaluée sur un ensemble de jeux de données différents pour

démontrer son efficacité dans des applications du monde réel. De plus, nous

développons un cadre général qui unifie les différentes méthodes d’imputation

et permet de sélectionner une méthode en ajustant les hyperparamètres.

Nous faisons une distinction importante en différenciant les méthodes

procédurales et itératives. Les méthodes procédurales sont optimisées sur

les valeurs observées et imputent les valeurs manquantes une seule fois. En

revanche, les méthodes itératives mettent à jour les valeurs imputées de

manière itérative jusqu’à ce que les critères de convergence soient atteints.
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Nous ajoutons la méthode nouvellement proposée, les forêts aléatoires au-

toréplicatives, au cadre général dans les versions procédurales et itératives.

De plus, nous l’étendons avec des forêts aléatoires autoréplicatives itératives

distributionnelles qui intègrent la confiance du modèle envers l’imputation

à chaque itération dans la modélisation des cycles suivants et produisent

une distribution pour chaque valeur imputée à la fin.

Enfin, nous étendons l’applicabilité des forêts aléatoires autoréplicatives

aux données génomiques de haute dimension, notamment aux ensembles de

données de polymorphismes mononucléotidiques, en imputant les valeurs

manquantes dans des fenêtres séparées et en incorporant les fenêtres traitées

dans la modélisation des suivantes de manière enchâınée. Notre approche

présente des résultats compétitifs, voire supérieurs, par rapport à d’autres

méthodes sans référence.
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Chapter 1

Introduction

Information and data in today’s world are everywhere. It is natural for hu-
mankind to collect and analyze this information and make inferences and
decisions based on interconnections within the data. Automated machine
learning has gained huge popularity in recent years and has successfully
helped people in data processing. In the case of labeled data, a machine
learning algorithm is able to explore the connections and interactions be-
tween the properties of a particular data instance and its label and hence to
predict labels of new incoming unlabeled instances. Frequently, an instance
may be associated with a set of multiple outputs, also known as targets or
labels, instead of a single one. This scenario is known as multi-output learn-
ing and is encountered in a wide variety of domains. While it is possible
to build a separate model for each output, the relations and dependencies
between the data and outputs can be captured in a fundamentally more
profound way if the outputs are modeled jointly by a single model.

1
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1.1 Real-world applications of multi-output
modeling

In this section, we discuss a few examples of application areas for multi-
output machine learning methods. However, we want to emphasize that this
is just a very small subset of domains where the perspective of multi-output
modeling is relevant. In the examples below, the targets are expected to
impact each other, and the joint modeling can reveal these interactions.

• Medical Diagnosis and Treatment design

Multi-output methods can be used to predict various medical out-
comes simultaneously, such as predicting the progression of different
diseases, suggesting personalized treatment plans, and predicting pa-
tient outcomes (e.g. survival rates, and recovery times) influenced by
the previous factors.

• Environmental Monitoring and Analysis

Multi-output models can predict multiple environmental variables like
air quality, temperature, humidity, and pollution levels, enabling a
more comprehensive understanding of environmental conditions and
their impact.

• Climate Modeling

Climate models often involve predicting various climate-related vari-
ables like temperature, precipitation, sea levels, and ocean currents,
which are interconnected and impact each other.

• Vegetation Forecasting

Vegetation models may, for example, describe the ratios of vegetation
types per earth unit. By altering, e.g. the climatic or soil variables,
we can query potential vegetation distribution in the changing envi-
ronment.
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• Bioinformatics and Genomics

Multi-output methods can be employed to predict various properties
of biological molecules, such as predicting the function of proteins,
gene expression levels, and interactions between different molecules.

• Image Analysis and Computer Vision

Multi-output models can simultaneously predict different attributes
in images, such as object detection, segmentation, and recognition of
multiple objects within a single image.

• Social Media Analysis

In social media, multi-output methods can be used to predict multiple
user engagement metrics, sentiment scores for different aspects of a
text, and user behaviors across various social platforms.

• Energy Consumption Forecasting

Predicting multiple energy consumption variables, such as electric-
ity, gas, and water usage, can help optimize energy distribution and
management in smart grids and buildings.

In this thesis, we discuss in more detail multi-output modeling for potential
vegetation prediction (e.g. in the absence of human and urban activity) as
well as missing value imputation in genomics data (which may be further
used for detecting associations between the genotype and phenotypes).

1.2 Goals and objectives

The overall goal of this thesis is to develop and enhance machine learning
methods capable of uncovering and exploiting potential connections and
relationships between the outputs. We aim to have an impact in the field
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of multi-output modeling by enlarging the area where the multi-output
approaches are beneficial and thus promoting their usage in general.

Generally, the fundamental objectives of this thesis include the adapta-
tion of the existing machine learning multi-output techniques in the cases
where they perform sub-optimally. More specifically, we begin with throw-
ing new light on the modeling of multi-modal target distributions where
existing multi-target approaches typically do not capture such specific data
structures and tend to predict non-relevant values that are in fact rarely
observed.

After that, we bring up the problem when some of the target values are
known after the training and before the prediction and are to be incorpo-
rated into the joint inference of unknown targets.

We hypothesize and further prove that in both scenarios the multi-output
methods known in the literature as Regressor Chains can be generalized to
perform more refined joint modeling and thus address both aforementioned
challenges.

Finally, we point out that the imputation of missing values in features can
be viewed as a multi-output predictive problem where, consequently, joint
multi-output modeling may achieve superior performance. We discuss the
related work from this perspective and uncover new insights on how multi-
output methods such as Random Forests can be successfully adapted for
missing value imputation, or denoising, in the data.

1.3 Summary of contributions

The first part of this thesis is dedicated to the challenges of multi-target
regression, i.e. when the outputs are continuous. One of the classic multi-
target methods is Regressor Chains which order targets into chains and
incorporate information about the previous targets into the predictions of
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the subsequent ones. We propose a new approach, Multi-Modal Ensembles
of Regressor Chains (mmERC), which improves the performance of Re-
gressor Chains when the data distribution is multi-modal, e.g. consists of
several clusters. In this case, traditional models including Regressor Chains
tend to put the predictions in between actual clusters, where the data is
unlikely to exist in practice. Our approach is better adapted to such data
distributions and successfully models multi-modal distributions.

Another challenge of multi-target Regression Chains is how to include in-
formation about target values that come known in the prediction phase.
While one may argue that it is possible to predict all targets and mod-
ify the known ones, the question of interest is the joint distribution of
these targets, when modifying one target affects the predictions of the oth-
ers. From a certain point of view, this problem may be reformulated as
missing value imputation in the target space, where some values are ob-
served and others need to be predicted, or imputed. To this end, we design
Metropolis-Hastings sampled Regressor Chains (mhsRC) and Metropolis-
Hastings sampled Ensembles of Regressor Chains (mhsERC) which allow
backward inference and modeling of the outputs together while incorpo-
rating the given information about the targets. We apply this approach
to both synthetic and real-world vegetation distribution data and study
potential vegetation distribution when the urban activity is removed.

The second part of this thesis is dedicated to missing value imputation
which we consider as a multi-output problem, where features become tar-
gets to predict, or impute. We propose Autoreplicative Random Forests
in procedural (pARF), iterative (itARF), and distributional iterative (di-
tARF) versions. Autoreplicative Random Forests receive the same set of
features as inputs and outputs and successfully train to denoise, or im-
pute, data. Additionally, we compare different existing methods for missing
value imputation and incorporate them into a common framework where
a method can be selected via hyperparameter tuning. In an experimental
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study, we show that Autoreplicative Random Forests are very efficient for
missing value imputation while maintaining low computational complexity.

We also propose an extension of ARFs, Chains of Autoreplicative Random
Forests (ChARF), for missing value imputation in Single Nucleotide Poly-
morphism (SNP) genomic data. The important characteristics of such data
are that the data is high-dimensional but low-sampled and ordering of the
features is important. The proposed solution, ChARF, takes into account
these properties and outperforms the baselines in most experiments.

1.4 Thesis organization

The remainder of the thesis is organized as follows. Chapter 2 presents the
background required for understanding the specifics and challenges of multi-
output modeling together with a general overview of the related work. In
Chapter 3, we present Multi-Modal Ensembles of Regressor Chains. Chap-
ter 4 discusses backward inference in probabilistic Regressor Chains and
introduces Metropolis-Hastings sampled [Ensembles of] Regressor Chains.
Chapter 5 describes missing value imputation as a multi-label task and
presents Autoreplicative Random Forests which successfully solve this prob-
lem. In Chapter 6, we present Chains of Autoreplicative Random Forests
which impute missing values in high-dimensional and low-sampled Single
Nucleotide Polymorphisms data. Finally, Chapter 7 concludes the thesis
by providing an overall summary of our contributions, and by presenting
potential future work to extend the research explored in this thesis.

1.5 List of works appearing in this thesis

The contributions in this thesis are available as published articles or preprints.
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• E. Antonenko and J. Read. Multi-modal Ensembles of Regressor
Chains for Multi-output Prediction. Advances in Intelligent Data
Analysis XX, IDA 2022.

• E. Antonenko and J. Read. Chains of Autoreplicative Random Forests
for missing value imputation in high-dimensional datasets. ArXiv e-
prints, 2023. This preprint was presented at the Multi-Label Learning
workshop, ECML PKDD 2022, and received the Best Paper award.
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Chapter 2

Background

This thesis is focused on multi-output predictive models. In this chap-
ter, we provide a general introduction to this domain. First, we describe
the concept of machine learning and explain the key ideas behind this
field. Second, we introduce multi-output models, followed by marginal and
joint modeling in multi-output settings. Further, we proceed with giving
background on some particular multi-output methods. Then, we describe
missing value imputation which may be also seen as a multi-output predic-
tion problem. We conclude this chapter by summarizing the notation used
throughout the thesis.

2.1 Machine learning

Machine learning is a fast-developing discipline that investigates the way
computers can automatically search for the best model to explain the data
via an optimization process. The targeted model automatically captures

9



Background 10

complex patterns in data and makes intelligent decisions based on the ex-
tracted information.

In supervised learning, models are built with an input set of feature vec-
tors X and an output set of target targets Y (comprising one or several
targets), each represented by a number of instances. Each instance x ∈ X

is described by a feature vector x = [x1, . . . , xp] and associated with an
output vector y = [y1, . . . , yL], a dataset D = {(x, y)}N

i=1 consists of N

instances. If the output is represented by categorical variables, the task is
called classification. If the outputs are continuous, the task is called regres-
sion. The objective of supervised learning is to build a function h : X → Y

which can predict outputs Y from input features X and is defined by a set
of parameters θ.

Supervised models learn to optimize a loss function L(Ŷ , Y ) measuring the
error between the predictions Ŷ = h(X) and the true values Y . A loss
function, also known as a cost function or an objective function, provides
a measure of the quality of the model’s predictions. The choice of an
appropriate loss function depends on the specific learning task. Training a
model corresponds to optimizing a loss function. A metric is a function used
to measure the predictive performance of your model. Metric functions are
similar to loss functions, except that the results from evaluating a metric
are not used when training the model. Any loss function can be used as a
metric.

Among popular classification loss functions are, for example, Zero-One
(0/1) Loss, Binary Cross-Entropy (Log Loss), and Categorical
Cross-Entropy. Zero-One Loss measures the fraction of incorrect predic-
tions among all instances,

Loss01 = 1
N

N∑

i=1
I(ŷi , yi).
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Binary cross-entropy is commonly used in binary classification problems. It
measures the dissimilarity between the predicted probabilities L(p(Ŷ ), Y )
and the true binary labels,

LogLoss = 1
N

N∑

i=1
−(yi log(p(ŷi)) + (1− yi) log(1− p(ŷi))).

Binary Cross-Entropy encourages the model to output high probabilities for
the correct class and low probabilities for the incorrect class. Categorical
Cross-Entropy extends Binary Cross-Entropy to multiple classes. The loss
quantifies the divergence between the predicted class probabilities and the
true class labels. While these are examples of common loss functions that
are used quite extensively, there are many other specialized loss functions
designed for specific tasks or domains. The choice of the loss function
depends on the learning task, the characteristics of the data, and the desired
behavior of the model.

Exact Match and Hamming Score are among popular classification met-
rics [Tsoumakas and Katakis, 2007]. Exact Match, or simply Accuracy
in single-output machine learning tasks, measures the fraction of correctly
predicted instances, i.e. instances with all labels predicted correctly, and
can be presented as Exact Match = 1− Loss01. Hamming Score counts the
fraction of per-output labels predicted correctly,

Hamming Score = 1
N
· 1

L

N∑

i=1

L∑

j=1
I(ŷij = yij).

In this thesis, we will refer to Exact Match and Hamming Score as joint
accuracy and marginal accuracy respectively.

In regression tasks, Mean Squared Error (MSE) and Mean Absolute Error
(MAE) are widely used. MSE computes the average squared difference
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between the predicted and true values,

MSE = 1
N

N∑

i=1
(yi − ŷi)2.

The squared term gives higher weight to larger errors, making it sensitive to
outliers. The goal is to minimize MSE, which leads to estimating the mean
or expected value of the target variable. Mean Absolute Error calculates
the average absolute difference between the predicted and true values,

MAE = 1
N

N∑

i=1
|yi − ŷi| .

Compared to MSE, it is less influenced by the magnitude of errors. MAE is
more robust to outliers but can be less sensitive to subtle differences. Mini-
mizing MAE implies estimating the median of the target variable. Another
possible choice is Uniform Cost Function (UCF) [Burger and Lucka, 2014]
as an approximation of 0/1 Loss for regression setting,

UCF(δ) = 1
N

N∑

i=1





0 if ∥yi − ŷi∥2 < δ
2 ,

1 otherwise,

where δ is an adjustable parameter defining the size of the neighborhood
of ground-truth points.

2.2 Multi-output models

In traditional machine learning tasks, such as classification or regression,
a single label y is assigned to each data point. However, in multi-output
learning, an instance can be associated with multiple labels y = [y1, . . . yL]
simultaneously. In this setting, an algorithm is trained to predict multiple
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labels or targets for each instance. This task is called multi-target predic-
tion in [Waegeman et al., 2019]. Multiple outputs may often be correlated
with each other, and the use of this information may boost predictive qual-
ity.

For example, an email classification system may illustrate a multi-label
problem. In a traditional email classification task, the goal is to assign a
single label to each email, such as “spam” or “not spam”. This is a binary
classification problem where each email is either classified as spam or not.
In multi-label learning, the email classification task is extended to allow
assigning multiple labels. For example, an email can be classified as both
“not spam” and “urgent” simultaneously. In this case, the algorithm needs
to learn to predict multiple labels for each email.

Another well-known example is image classification where some labels may
be correlated and have a higher chance to explain each other, e.g. an object
looking similar to a palm tree is likely to be in pair with an object looking
like a beach chair but much less likely to be coupled with an office chair.
Multi-target regression may be used, for example, in predicting affinity of
different drugs to proteins, or gene expression under multiple scenarios.
Physical characteristics of a plant such as height, weight, fertility, protein
concentration, etc., predicted from characteristics of the surrounding earth
may be considered as another example of multi-target prediction.

The main challenge in multi-output learning is dealing with the inherent
complexity of the output space and dependencies between the outputs.
Each target can be treated as a separate single-output problem, but the
presence of multiple targets introduces interactions and correlations be-
tween them. The algorithm needs to capture these dependencies and make
accurate predictions for each output.

In [Kocev et al., 2013], multi-target prediction is discussed with a focus on
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ensembles of predictive clustering trees and the presence of specific struc-
tures in the target space, e.g. hierarchies between the targets. In [Waege-
man et al., 2019], authors present a more recent unifying view on multi-
target prediction and discuss similarities and differences between related
problems and methods.

As in traditional single-output machine learning, multi-output settings may
fall into two subcategories, multi-label classification (where the outputs
take categorical values) and multi-target regression (where the outputs take
continuous values). An extensive review of the multi-label classification set-
ting is given in [Tsoumakas and Katakis, 2007; Zhang and Zhou, 2014] along
with discussion of recent trends and open issues in [Mylonas et al., 2023],
and multi-target regression has been recently discussed in [Waegeman et al.,
2019].

2.2.1 Marginal and joint modeling

Independent learning also known as marginal learning, a straightforward
approach for multi-output modeling, refers to an approach where each task
or variable is learned independently, without explicitly considering the de-
pendencies or relationships with other tasks. In the classification context,
this approach is known as the binary relevance method [Tsoumakas and
Katakis, 2007; Godbole and Sarawagi, 2004]. Given an instance x, the
prediction is obtained as

ŷ = [ŷ1, ..., ŷL] = [h1(x), h2(x), ..., hL(x)].

This means that L models are trained to maximize the marginal proba-
bilities p(yj |x) separately for each target yj, j = 1, ..., L. An important
advantage of this approach is flexibility as each model hj can be optimized
separately, allowing for different algorithms or hyperparameters to be used
for each model, based on specific characteristics of each task. However,
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the interdependencies between the targets are completely ignored which
can lead to suboptimal performance or prediction of impossible combina-
tions [Park and Fürnkranz, 2008; Elisseeff and Weston, 2001; Godbole and
Sarawagi, 2004].

Joint modeling refers to a learning approach where multiple tasks or vari-
ables are learned simultaneously. In joint learning, a model considers all
tasks or variables together, capturing the dependencies and interactions
between them and maximizing the joint probability p(y |x). The goal is
to leverage the shared information across the tasks to improve overall per-
formance. Such an approach allows exploiting shared structure as joint
learning can leverage the relationships and dependencies between tasks to
improve predictive accuracy. So far, there is a consensus among the re-
searchers from the domain that output interdependencies have to be incor-
porated into the modeling [Luaces et al., 2012; Tsoumakas and Katakis,
2007; Guo and Gu, 2011; Alvares-Cherman et al., 2012].

2.2.2 Maximum Likelihood Estimation

One of the common approaches for estimating the joint probability of a
dataset is Maximum Likelihood Estimation (MLE). This strategy treats the
problem as an optimization problem, where a set of parameters that results
in the best fit for the joint probability of the data sample is estimated. In
a machine learning setting, this corresponds to maximizing the probability
of observing the targets y from the joint probability distribution P (y |x, θ)
given unknown parameters θ of a classfication or regression model.

The Expectation-Maximization (EM) algorithm is an approach for Maxi-
mum Likelihood Estimation in the presence of latent variables (or, in par-
ticular, missing values or labels), that is to say, that not all variables related
to the problem are observed [Bishop, 2006]. The EM algorithm is an itera-
tive approach consisting of two repeating steps. In the first estimation step
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(E-step) the algorithm attempts to estimate the missing or latent variables.
The second maximization step (M-step) tries to optimize the parameters
of the model to best explain the data. The EM algorithm has a wide
range of applications, although is perhaps most well-known for its use in
unsupervised learning problems, such as density estimation and clustering.

2.2.3 Algorithm adaptation approaches

Algorithm adaptation methods address multi-output problems directly by
adapting some existing learning algorithms to a multi-output scenario.
Tree-based models are among the most popular machine learning approaches
which can be used both for regression and classification in general and, in a
multi-output setting, follow into the algorithm adaptation family of meth-
ods.

A Decision Tree (DT) [Breiman et al., 2017], an underlying structure in this
methods family, is a tree graph structure and consists of nodes connected
by directed edges. Every node may have outgoing edges connecting it to
its children. The final nodes with no output edges are called leaves. The
top node which has only outgoing edges (and no ingoing ones) is called the
root. Fig. 2.1 illustrates a decision tree and its decision boundaries in a
single-output setting.

Predictive Clustering Trees [Blockeel et al., 2000; Kocev et al., 2013] are
a well-established generalization of Decision Trees, where each node repre-
sents a data cluster and each edge corresponds to a decision rule. Starting
from the root which contains all data points, all nodes are split recursively
by applying a decision rule to one of the features. The task of a machine
learning algorithm is to identify the optimal split using the split quality
criterion. The tree-growing process is stopped when the stopping criterion
is reached, and each terminal node, i.e. leaf, is associated with an output
value. In the prediction phase, each incoming instance traverses the tree
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(a)

(b)

Figure 2.1: Single-output decision tree (A) and its decision boundaries
(B) on a dataset with two variables and one binary label.
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from the root to a leaf and is assigned the output value of the leaf. The
PCT method has been also extended to predict multiple output variables
in [Kocev et al., 2013]. In multi-output prediction, each leaf of a tree is
assigned a combination of output values.

Random Forest (RF) [Breiman, 2001] is an ensemble of multiple decision
trees. To introduce diversity in the learning process, each tree is built
on a random subset of features and bootstrap replicates of the training
instances. The final prediction is a major vote for all tree predictions in the
classification scenario or their mean average in the regression case. This
holds equally for single- and multi-output Decision Trees [Kocev et al.,
2013].

Random Forests are often preferred over single Decision Trees as they typ-
ically show better performance. While building multiple trees instead of
a single one may seem more computationally expensive, taking a random
subsample of features per tree alleviates this drawback. Also, the building
process is straightforward to parallelize as trees are built independently.
Though Decision Trees are considered easier to interpret as a consequence
of decision rules, Random Forests may still provide feature importances
computed as a total reduction of the criterion brought by each feature.
Fig. 2.2 illustrates a Random Forest1.

In general, multi-output tree-based methods may be considered as algo-
rithm adaption approaches as they adapt to handle multi-dimensional out-
puts. Both multi-output Decision Trees and multi-output Random Forests
typically outperform their single-target versions applied to all features sep-
arately one by one. Also, they are a frequent choice in problem transfor-
mation approaches described in more detail in the next section.

1Created with BioRender.com
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Figure 2.2: Illustration of a Random Forest as an ensemble of trees.
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2.2.4 Problem transformation approaches

Another family of multi-output methods is problem transformation methods
that transform a multi-target problem into multiple single-target problems.

For example, the Binary Relevance (BR) [Tsoumakas and Katakis, 2007;
Godbole and Sarawagi, 2004] approach straightforwardly transforms a multi-
output problem into a set of independent single-output problems while com-
pletely ignoring correlations and interdependencies between the targets.

The Label Powerset (LP) [Tsoumakas and Katakis, 2007] method considers
each combination of output values into a unique class, and thus can be
exploited in a classification setting but not in a regression problem. A
popular Random k-Labelsets (RAkEL) [Tsoumakas and Vlahavas, 2007]
approach generalizes the LP method by considering a small random subset
of labels and learning a single-label classifier for the prediction of each
element in the powerset of this subset.

Another well-known representative of the problem transformation family
of methods is a chaining approach implemented, e.g. in Regressor and
Classifier Chains. The initial idea of the chaining approach, for classi-
fication [Read et al., 2011], was to arrange per-target models in a chain,
such that the previous labels are used to train each next model in the train-
ing phase and the output prediction of one model becomes an additional
feature for the subsequent models in the prediction phase. That is, given
an instance x, we obtain a prediction as

ŷ = [ŷ1, ..., ŷL] = [h1(x), h2(x, ŷ1), ..., hL(x, ŷ1, ..., ŷL−1)].

Each estimator hj in the chain takes [x1, . . . , xp, y1, . . . , yj−1] as feature
space and is trained to predict ŷj. In the testing phase, the algorithm
begins with y1 and propagates predictions ŷ along the chain, on each step
augmenting the feature space by the predictions of the previous estimators.
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As opposed to independent modeling (binary relevance in classification,
Fig. 2.3a), the chaining approach allows the model to capture the depen-
dencies and interactions between the target variables. An important char-
acteristic of Regressor Chains is that they can utilize various base regression
models including non-differentiable ones, e.g. linear regression, tree mod-
els, or support vector machines, for each target variable in the chain. The
choice of the base model depends on the characteristics of the problem and
the desired performance. The main advantage of Regressor Chains is their
ability to benefit from the interdependencies between target variables by
leveraging the predictions of the previous models. It allows the models to
exploit the relationships among the targets, potentially leading to improved
predictive performance.

The order of the chain clearly has an impact on the model’s ability to learn
interdependencies between the targets and thus predictive performance.
Different approaches have been suggested to optimize chain order includ-
ing evolutionary algorithms [Moyano et al., 2017] and using correlation to
build the best structure [Melki et al., 2017]. Another way to obtain better
results for Classifier and Regressor Chains is using Ensembles of Classi-
fier or Regressor Chains (ECC and ERC) with random chain orders [Read
et al., 2011; Spyromitros-Xioufis et al., 2016].

Classifier Chains have proved to have high predictive performance and are
widely known as one of the state-of-the-art techniques for multi-label mod-
eling [Dembczyński et al., 2012; Read et al., 2021]. Although they seem
naturally extendable to a regression setting, Regressor Chains are less ro-
bust and may be more sensitive to, e.g., suboptimal chain order or errors
propagating along the chain [Read and Martino, 2020]. However, Regressor
Chains are still a popular model choice and have been successfully applied
to a number of problems, e.g. [Wu and Lian, 2020; Poonawala-Lohani et al.,
2021; D’hondt et al., 2023].
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Figure 2.3: Different chain structures for a problem with L = 4 targets.
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The original Regressor and Classifier Chains definition [Read et al., 2011]
referred to a fully-connected cascade, Fig. 2.3b; nevertheless, this view
may be extended to the chains with any Directed Acyclic Graph (DAG)
order [Read et al., 2021], for example, Markov chains (Fig. 2.3c), trees
(Fig. 2.3d and [Ramı́rez-Corona et al., 2014]), arbitrary DAGs (Fig. 2.3e
and [Zhang and Zhang, 2010]). The chaining approach may be also adapted
to an undirected and cyclic framework, i.e. beyond the aforementioned
DAG formulation. For example, [Guo and Gu, 2011] proposed a fully-
connected bi-directional classifier graph, a network shown in Fig. 2.3f. The
advantage of such a model is the full connectedness: a prediction for any
yj can influence a prediction for any yk and vice versa. The inference
phase of this method is inherently more expensive compared to a single
greedy pass used by Classifier Chains because many iterations through the
graph, or cycles, are needed to arrive at the convergence of an estimate.
In [Read and Martino, 2020], Regressor Chains were further developed into
a probabilistic framework.

A Classifier or Regressor Chain may be also seen as a particular imple-
mentation of a Bayesian Network, specifically a hybrid Bayesian network
[Salmerón et al., 2018] in the regression case. It is worth noting that in clas-
sic Bayesian Networks training is extremely costly and inference options are
limited, normally corresponding to linear-Gaussian models or approximate
methodologies based on sampling, and variational inference.

An alternative non-chaining approach in regression is Regressor Stack-
ing [Spyromitros-Xioufis et al., 2016; Santana et al., 2017] which includes
predictions of single-target regressors as new features for the next rounds of
training. The Multi-Target Regressor Stacking [Spyromitros-Xioufis et al.,
2016] method consists of separately training single-target models for each
output and using their prediction as additional features for the second
round of training. Considering a dataset composed by X = {x1, x2, ..., xp}
input features and Y = {y1, y2, ..., yL} target outputs, this approach uses
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the single-target predictions Ŷ = {ŷ1, ŷ2, ..., ŷL} as new features, forming
a new training dataset X ′ = {x1, x2, ..., xp, ŷ1, ŷ2, ..., ŷL}. The transformed
input is used to train the second regressors’ layer of L single-target models,
whose outputs are the final predictions. In Deep Regressor Stacking [San-
tana et al., 2017] a similar idea is used, but several layers of re-prediction
are performed. The authors show that the predictive error may lower with
a rise of number of layers.

2.3 Missing value imputation

Missing values are abundant and remain a very important issue in real-
world data in all domains. They refer to the absence of data for a particular
feature and instance in a dataset. Further, we denote by X̃i,j a random
variable that corresponds to a missing value in the i-th instance and j-th
feature and has to be estimated, i.e. imputed, and by X̃ = {X̃i,j} the set
of all missing value in the data.

Missing values can occur for various reasons, such as data entry errors, data
loss during collection or storage, non-response in surveys, and many others.
Handling missing values is important as their mistreatment may bias pre-
dictions, affect statistical analyses negatively, and impact the performance
of machine learning models.

Missing values may be traditionally classified into three types with regard
to the pattern of missingness. These are Missing Completely at Ran-
dom (MCAR), Missing at Random (MAR), and Missing Not at Random
(MNAR) [Santos et al., 2019]. When values are Missing Completely at
Random, the missing values occur randomly, and their presence or absence
does not depend on observed or unobserved data. In the Missing at Ran-
dom case, the missingness is related to observed variables but not to the
missing values themselves. When values are Missing Not at Random, the
probability of missingness depends on the values that are missing.
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Missing values can lead to biased estimates, especially if the missingness
is related to the variable being measured, i.e. values are missing not at
random. In particular, ignoring missing values can reduce the sample size
and subsequently decrease the statistical power of the analysis, making it
difficult to detect significant effects or relationships. Additionally, missing
values can distort the relationships between variables, leading to inaccurate
interpretations and conclusions.

For example, let us consider a study examining the effects of a new teach-
ing method on students’ academic performance. The researchers collect
data on students’ test scores before and after implementing the new teach-
ing method. However, they encounter a missing values problem for the
post-method scores, as some students were absent on the day of the test
or failed to complete the test for various reasons. To address this issue,
the researchers exclude the students with missing data from their analy-
sis and only analyze the data from those students who provided complete
information on both pre-method and post-method scores. After analyz-
ing the available data, they find a significant improvement in the average
test scores. Based on this result, they infer that the new teaching method
is effective in enhancing students’ academic performance. However, this
conclusion may be biased due to the exclusion of students with missing
post-method scores. For instance, the absent students might have had
lower motivation or struggled more academically, leading to a potential un-
derestimation of the effects of the teaching method. By excluding students
with missing post-method scores, the researchers unintentionally introduce
bias into their analysis. The excluded students may have different outcomes
compared to those included, and this can impact the observed improvement
in test scores.

Some machine learning algorithms can handle missing values inherently
(e.g. variations of decision trees) and can work with datasets containing
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missing values without additional preprocessing. However, most off-the-
shelf machine learning methods are not able to do this. This increases the
necessity for imputation methods, i.e. filling in missing values with esti-
mated values based on observed data. Various imputation techniques aim
at replacing missing values with plausible values, maintaining the integrity
of the dataset.

One of the simplest though common approaches is imputation with some
statistics, e.g. mean, mode, or median of the observed values [Little and
Rubin, 2019]. Though simple and fast, this approach does not consider any
relationships between variables and may not accurately represent the true
values.

Another popular approach is hot deck imputation which replaces missing
values with values from similar instances in the dataset. It involves finding
the nearest neighbors based on a similarity measure and imputing the miss-
ing values with values from those neighbors. For example, this approach is
implemented in [Schwender, 2012] by using the k-Nearest Neighbors algo-
rithm. Hot deck imputation is better adapted to preserve the relationships
between variables.

A more complex approach is building a prediction model for each variable
using the complete or randomly pre-imputed cases and using that model to
predict the missing values [Montiel et al., 2018; van Buuren and Groothuis-
Oudshoorn, 2011; Stekhoven and Bühlmann, 2011]. For each target vari-
able, a model utilizes all other variables or a subset of them as predictors to
estimate the missing values. In [Montiel et al., 2018] the available complete
values of other features are used to train a model, while [van Buuren and
Groothuis-Oudshoorn, 2011; Stekhoven and Bühlmann, 2011] first fill the
missing values randomly or with some statistics, and then iteratively up-
date the values until a convergence criterion is met. This family of methods
may remind the binary relevance method from multi-output prediction as
an independent estimator is built for each feature.
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Finally, advanced machine learning algorithms, such as deep learning and
in particular Denoising Autoencoders [Vincent et al., 2008], can be used for
missing value imputation. These algorithms learn patterns and relation-
ships from the available data and use that knowledge to predict missing
values. These techniques can handle complex data structures and capture
non-linear relationships, but they may be computationally expensive and
require careful tuning. Autoencoders are a type of neural network designed
to learn efficient representations or compressed versions of input data. Au-
toencoders consist of an encoder network that maps the input data to a
typically lower-dimensional latent space, and a decoder network that recon-
structs the original input data from the latent representation. The encoder
may consist of one or more hidden layers, which gradually reduce the di-
mensionality of the input data. A latent space, or encoding, is a compact
representation of the input data learned by the encoder. It captures the
most important features or patterns in the data. The decoder takes the
encoded representation from the latent space and reconstructs the original
input data. Similar to the encoder, the decoder consists of one or more
hidden layers that gradually increase the dimensionality of the data to
match the original input dimensions. The performance of an autoencoder
is evaluated based on the loss function of the original input data and its re-
construction from the latent representation. Autoencoders are widely used
to denoise corrupted or noisy input data as well as impute missing data.
By reconstructing the original clean data from inputs presenting missing
values, they effectively learn to replace these gaps with reasonable values.

While missing values are widely seen in real-world datasets in all appli-
cation domains and are typically imputed in a pre-processing step before
further data analysis, some studies show that it might be beneficial to
impute missing values in the feature space and model targets simultane-
ously [Le Morvan et al., 2021; Perez-Lebel et al., 2022].

On the other hand, in particular problems we may observe incomplete
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data in the target space when values of some of the targets are observed
while others are missing [Beigaitė et al., 2022]. In this case, instead of just
predicting the unobserved targets it is beneficial to include information from
the observed values to explore possible correlations between the targets
with observed and unobserved values. As a motivating example of such
problem, we study possible vegetation in the absence of human activity.
In this setting, we may observe only data when urban types are present
and aim to predict shift of vegetation distribution when urban types are
‘provided’, i.e. set to zero.

2.4 Single Nucleotide Polymorphisms

Single Nucleotide Polymorphisms (SNPs) represent genetic variation among
individuals given by single nucleotide differences at specific positions in
the DNA sequence (Fig. 2.4). For example, at a specific position, one
person might have an adenine (A), while another person might have a
guanine (G). These single nucleotide differences can be used as genetic
markers to track genetic variation across populations. Single Nucleotide
Polymorphisms genotyping typically involves using high-throughput geno-
typing technologies to determine the genotype (i.e. variant of the SNP) at
specific SNP positions for each individual. This information is then used
to assess the association between SNP genotypes and the trait of interest,
widely known as Genome-Wide Association Study (GWAS) [Manolio, 2010;
Uffelmann et al., 2021]. It involves examining the entire genome of indi-
viduals to detect association of particular SNPs with one or several traits
of interest. GWAS studies have contributed to significant advancements in
our understanding of the genetic basis of complex traits and diseases. They
have identified numerous SNPs associated with various traits and provided
insights into the underlying biology. These findings can have implications
for personalized medicine, risk prediction, and the development of targeted
therapies.
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Figure 2.4: Single Nucleotide Polymorphisms. Copyright: Scientific DX
GmbH, 2020
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As happens frequently in real-world data, SNP datasets are prone to the
presence of missing values. These can arise due to various reasons, includ-
ing technical limitations in genotyping platforms, sample quality issues,
biological reasons such as genetic variation and deviations from Hardy-
Weinberg dysequilibrium, or combining different datasets with unequal sets
of features in meta-studies [Das et al., 2018]. Imputation methods are usu-
ally split into two subgroups, reference-based and reference-free methods.
Reference-based approaches require a reference panel of large size and high
quality and remain state-of-the-art methods in human genome studies [Das
et al., 2018]. However, in less-studied species such as most animals and
plants, these reference panels are not available, and thus a need for meth-
ods based only on the data available arises [Davies et al., 2016]. These are
called reference-free and remind us about traditional missing value impu-
tation techniques. However, a very important challenge in SNP data refers
to their curse of dimensionality. The SNP datasets are typically high-
dimensional (105−106 features) and low-sampled (102−103 instances) and
these characteristics raise issues for many machine learning methods [John-
stone and Titterington, 2009]. In this thesis, we propose a method that
handles effectively missing values in SNP data and typically outperforms
other baseline methods.

2.5 Notation

We use the following notation in this thesis:

• X is an input set of p-dimensional feature vectors;

• x ∈ X is an instance, described by a feature vector x = [x1, . . . , xp];

• Y is an output set of L-dimensional target vectors;
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• Each instance x ∈ X is associated with an output vector y = [y1, . . . , yL],
y ∈ Y ;

• D = {(x, y)}N
i=1 is a dataset of N samples;

• h : X → Y is a predictive model (regressor or classifier);

• θ are parameters of the model h;

• ŷ = h(x) is a prediction of multi-output model h for instance x,
ŷ = [ŷ1, . . . , ŷL];

• L(Ŷ , Y ) is a loss function measuring error between the predictions
h(X) and the true values Y ;

• p(y |x) is a conditional probability of the output y given the instance
x;

• X̃i,j is a random variable corresponding to a missing value in the i-th
instance and j-th feature;

• X̃ is a set of random variables {X̃i,j}, i = 1, . . . , N , j = 1, . . . , p.





Chapter 3

Multi-modal Ensembles of
Regressor Chains

Classifier Chains are widely known as a technique that successfully models
the outputs together in the domain of multi-label classification. Although
this approach should be naturally extendable to the multi-target regres-
sion task (as Regressor Chains) and seems to be straightforward to adapt
to the regression setting, large improvements over independent models (as
seen already in the multi-label classification context over the recent decade)
have not as of yet been obtained from Regressor Chains. One of the rea-
sons for the unsatisfying performance of Regressor Chains is the adoption of
squared-error-based loss metrics which do not require consideration of joint-
target modeling. In this chapter, we consider cases where the predictive
distribution can be multi-modal. Such a scenario, which easily manifests in
real-world tasks involving uncertainty, motivates a different loss metric and,
thereby, a different approach. We thus present a new method for multi-
target regression: Multi-Modal Ensemble of Regressor Chains (mmERC),

33
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which performs competitively on datasets exhibiting a multi-modal distri-
bution, both against independent regressors and state-of-the-art Ensembles
of Regressor Chains. We argue that such distributions are not sufficiently
considered in the regression and particularly multi-target regression litera-
ture.

3.1 Introduction

Multi-target prediction algorithms can be a solution to the nowadays ex-
tensively growing number of multi-output data science problems across
academy and industry areas [Waegeman et al., 2019; Xu et al., 2019]. Multi-
label classification, which refers to the multi-output case with binary vari-
ables, has made significant progress in the previous decade. Within this
area, Classifier Chains is a family of methods that have proved to have
high predictive performance [Dembczyński et al., 2012; Read et al., 2021].
Compared to the naive approach with an independent classifier per label
(known in the literature as binary relevance), advanced methods such as
Classifier Chains are outperforming with regard to the most of the met-
rics. This has been widely attributed to their ability to extract and exploit
the dependencies between the targets, as well as other factors linked to
multi-target modeling [Read et al., 2021; Waegeman et al., 2019].

Chaining methods can be adapted in a straightforward way to the regression
context, known as Regressor Chains. Alongside many multi-label methods,
Classifier Chains are known to perform invariably better than independent
classifiers under empirical study [Madjarov et al., 2012; Bogatinovski et al.,
2022]. However, the performance of Regressor Chains shows relatively few
advantages compared to individual regression models [Read and Martino,
2020].

There has been recent work attempting to unravel some of the explanations
for Regressor Chains’ underperforming [Read and Martino, 2020]. It has



Multi-modal Ensembles of Regressor Chains 35

been identified that Classifier Chains perform well with respect to the 0/1
Loss, i.e. modeling the labels jointly and, in the probabilistic sense, seeking
out a posterior mode. However, in the case of Regressor Chains, an almost-
ubiquitous choice of loss metric is the Mean Squared Error (MSE) or its
variants; as also for regular regression problems. By definition, minimizing
MSE is the same as maximizing the likelihood of a Gaussian distribution;
it will thus correspondingly incur a posterior mean-seeking behavior.

This may be inadequate if the posterior is bi-modal or more generally multi-
modal. A model which optimizes MSE may place the prediction between
two modes of a hypothetical posterior – a place that will not correspond
to the ground truth and maybe is not even observed in data at all. This
situation is illustrated in Fig. 3.1 for a bi-modal distribution in a single-
target setting. While p(y1) is bi-modal and a mean is visibly distinguishable
from two modes, a Random Forest aims to model a uni-modal Gaussian-like
distribution p(ŷ1 |x) especially when a feature x is not highly informative.
Minimizing the Mean Absolute Error (MAE) is similar as it assumes a
[uni-modal] Laplacian rather than a Gaussian [Qi et al., 2020].

There are plentiful real-world examples of multi-modal outputs; these in-
clude, e.g. cases from agriculture [Vasconcelos et al., 2021], evolution biol-
ogy [Hendry et al., 2008], and gene expression [Paliwal et al., 2007]. For
instance, [Hendry et al., 2008] considers a finch (Geospiza fortis) popula-
tion that shows bi-modality in beak size, an important trait in this taxon,
while [Paliwal et al., 2007] studies bi-modality in gene expression for certain
pheromones, which allows a cell population to diversify its transcriptional
response. One more famous example of multi-modal data is described in
[Pearson, 1894], where normal mixture model analysis of the ratios of fore-
head breadth to body length for 1000 crabs sampled at Naples reveals the
presence of two distinct crab species. In such cases, an estimate under MSE
and under uncertainty can be inappropriate.
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Naturally, this discussion of multi-modality relates to regression tasks in
general, but it becomes particularly crucial in many multi-target regression
problems due to the effect of error propagation [Read and Martino, 2020]
and the potential presence and complexity of modes.

This chapter introduces a novel method, Multi-Modal Ensemble of Regres-
sor Chains (mmERC), which combines an ensemble approach for Regressor
Chains [Spyromitros-Xioufis et al., 2016] and a novel mechanism designed
to recognize the multi-modality and to produce the predictions taking it
into account. We argue that multi-modal scenarios are not widely studied
in machine learning research (as opposed to statistics) while taking them
into account can significantly boost the power of machine learning meth-
ods. Our experimental results show an improvement in the performance
of Regressor Chains with the novel technique. In particular, we show that
mmERC can outperform independent regressors.

The rest of the chapter is organized as follows. After summarizing the
background and related work in Section 3.2, we present our method in
Section 3.3. We describe our implementation and the setup for comparison
to independent regressors and standard Regressor Chains in Section 3.4.
The results and their discussion are in Section 3.5. In Section 3.6, we draw
the conclusions.

3.2 Background and Related Work

Following notation from Section 2, we are given a dataset D = {(x, y)}N
i=1

of N samples, each instance x = [x1, ..., xp] is associated with a vector
y = [y1, ..., yL] of real numbers. Opposite to a straightforward binary rel-
evance approach [Tsoumakas and Katakis, 2007; Godbole and Sarawagi,
2004], Fig. 2.3a, where

ŷ = [ŷ1, ..., ŷL] = [h1(x), ..., hL(x)],
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Figure 3.1: A ground-truth distribution p(y1) vs a distribution of pre-
dictions by Random Forest p(ŷ1 |x); both provided via a KDE estimate.
Most predictions – when provided under uncertainty (input x is poorly in-
formative here) – are in the space highly likely to be incorrect. The model
aimed to minimize MSE (Random Forest here) puts predictions of most
instances close to zero, between two modes of the real posterior distribu-

tion.
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the method of Classifier Chains [Read et al., 2011] arranges per-target
(base) models in a chain, such that the prediction of one model becomes
an additional feature for the subsequent models. That is, for an instance
x, we obtain a prediction as

ŷ = [ŷ1, ..., ŷL] = [h1(x), h2(x, ŷ1), ..., hL(x, ŷ1, ..., ŷL−1)].

This approach is demonstrated in Fig. 2.3b. It is observed that the perfor-
mance of Regressor Chains can suffer from sensitivity to the chain order.
Different approaches have been suggested to optimize chain order includ-
ing evolutionary algorithms [Moyano et al., 2017] and using correlation to
build the best structure [Melki et al., 2017]. One of the state-of-the-art
solutions to overcome this issue is using an Ensemble of Regressor Chains
(ERC) [Spyromitros-Xioufis et al., 2016], where n random chains are trained
independently. Then the final predictions are obtained as the means of the
n estimates for each target. The same mechanism is used, for example, in
Random Forests [Ho, 1995; Breiman, 2001], that output the average mean
of a number of Decision Trees. However, we observe that while Ensem-
bles of Regressor Chains work on average better than standard Regressor
Chains, they may produce inadequate results in the case of multi-modal dis-
tributions, and the improvement is not as significant as in the classification
scenario. This brings our interest to multi-modal regression.

By taking a squared-error loss metric such as MSE, conventional regression
models predict their estimated mean of the distribution. This approach
may produce inadequate results if the data distribution is bi-modal or multi-
modal (recall the example in Fig. 3.1) or whenever the mode is not close to
the mean. Modal regression (e.g. [Yao and Li, 2014]) is to model a mode
of distribution. The advantages of this approach are that modal regression
is more likely to capture a mode; which corresponds to values that are – in
those settings – more likely to occur in practice. Multi-modal regression has
been approached previously due to its properties of robustness to outliers
and heavy tail distributions [Feng et al., 2020]. In [Read and Martino,
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2020] a probabilistic approach allows to explicitly model the distribution
and take samples to find an approximation of the mode.

The questions related to understanding and modelling multi-modal distri-
butions stand close to predicting multiple hypotheses, e.g. in image classifi-
cation or future step prediction [Rupprecht et al., 2017], where a framework
reformulating existing single-prediction models as multiple hypotheses pre-
diction models is proposed. By optimizing a new meta loss, the proposed
solution outperforms a single-hypothesis approach where averaging over
hypotheses, or mean, is used.

Mode estimation has been studied in the Bayesian statistics literature and,
in particular, maximum a posteriori probability (MAP) estimation [Burger
and Lucka, 2014; Bassett and Deride, 2018]. These methods suggest, in
particular, optimizing the Uniform Cost Function,

UCF(δ) = 1
N

N∑

i=1





0 if ∥yi − ŷi∥2 < δ
2 ,

1 otherwise,
(3.1)

as an approximation of 0/1 Loss within δ-neighborhood of ground-truth
points. We recall that Classifier Chains are a natural choice if the 0/1 Loss
is to be used, yet this metric cannot be directly optimized in the regression
context where an exact match is unlikely to be obtained on the continuous
spectrum.

Another approach to a regression problem may be to discretize continuous
output space into bins and thus to adapt the problem for a classification
algorithm [Dougherty et al., 1995; Phan-Minh et al., 2020; Spyromitros-
Xioufis et al., 2020]. In [Phan-Minh et al., 2020], this is done for predicting
trajectories of a self-driving engine. In [Spyromitros-Xioufis et al., 2020],
a framework for solving multi-target regression problems via output space
quantization is proposed. Though such an approach allows joint modelling
by well-performing classification methods, the outputs continuity is lost,
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while we should solve a computationally difficult multi-class multi-label
problem with big number of classes per label. Also, finding a good dis-
cretization may be itself a complex task [Sokolovska et al., 2018].

The similarities and differences of regression and classification metrics, as
well as regimes when they are better to be used, are discussed, for exam-
ple, in [Muthukumar et al., 2021] for overparameterized models. In any
case, these mentioned works do not consider multi-target regression set-
tings. Multi-modality was considered in the context of multi-target regres-
sion in [Read and Martino, 2020], but specifically to probabilistic models,
therefore their study could not include methods such as tree-based meth-
ods; and results were not strong. In our experiments, Decision Trees and
Random Forests show competitive performance both as independent meth-
ods and as base models for Regressor Chains.

In this case, we suggest the UCF as a useful alternative for comparing model
performance. In the following Section 3.3, we present our novel approach to
minimize this loss, Multi-Modal Ensembles of Regressor Chains (mmERC)
that adapt the ERC method to datasets with multi-modal distribution and
do not require an explicit probabilistic analysis, allowing the application of
more diverse base classifiers regressors such as decision trees.

3.3 Multi-Modal Ensembles of Regressor
Chains

We present our novel method, Multi-Modal Ensemble of Regressor Chains
(mmERC), which aims at providing successful outputs in the context of
multi-modal distributions. The new approach is based on Ensembles of Re-
gressor Chains while targeting the Uniform Cost Function as a loss function.
However, as Regressor Chain-based methods bear a significant advantage of
being very flexible with regard to a choice of per-target base estimators, we
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want to maintain this flexibility and thus do not target the loss function of
base estimators directly. Instead of this, we simulate minimizing the UCF
function by two mechanisms that can be used with any base estimator.

3.3.1 Mechanism 1: one base estimator training

Using UCF as a loss function promotes mode-seeking by entailing a uniform
penalty when the correct mode is not found; unlike MSE which entails a
quadratic penalty. We select correntropy [Feng et al., 2015],

corr(yij, ŷij) = 1− e−(yij−ŷij)2
, i = 1, . . . , N, j = 1, . . . , L, (3.2)

as a smooth approximation of UCF, allowing fine-grained threshold selec-
tion. The MSE, UCF, and correntropy metrics are compared in Fig. 3.2.
The UCF and correntropy errors significantly increase when the prediction
does not fall to a small neighborhood of the truth point but stays nearly
constant when the prediction is far from this neighborhood.

As in traditional Regressor Chains, we train one base estimator per target
yj at a time, j = 1, . . . , L. Initially, we train the first regressor on the entire
dataset D. After that, we measure the performance of the predictions of the
trained model under correntropy. We select a subset of instances {xi} of D
of size s ·N , 0 < s < 1, with the lowest correntropy corr(yij− ŷij) and train
the second regressor on this reduced dataset. By using this mechanism, we
aim at cutting off the instances with too much uncertainty and training
on the instances which provide more information on the cluster choice,
thus improving the optimization process of the regressor. The parameter
s is a hyperparameter of the proposed method and is later evaluated in
Section 3.4.

This process bears some resemblance to iteratively reweighted least squares
or Expectation Maximization (EM) as mentioned in [Yao and Li, 2014]
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Figure 3.2: Comparison of Mean Squared Error (MSE), Uniform Cost
Function (UCF), and correntropy; for single target estimate where true

y = 5.

Algorithm 1 mmERC: training hj for target yj (done for j =
1, . . . , L)

1: procedure Fit(hj, {x, yj})▷ Train Base Estimator hj for target yj on
{x, yj}

2: h̃j ← clone of hj

3: fit h̃j on {(x, yj)} ▷ First training phase (full training set)
4: ŷj ← h̃j(x) ▷ Prediction of h̃j on x

5: corr← 1− e−(yj−ŷj)2
▷ Correntropy; See Eq. 3.2

6: {x′, y′
j} ⊂ {x, yj} ▷ Top s-instances wrt (lowest) corr, 0 < s < 1

7: fit hj on {(x′, y′
j)} ▷ Second training phase

8: return hj ▷ Return the trained model
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for the context of single-target regression; however, here we only take a
single step rather than an iterative EM-like procedure. The mechanism is
summarized as pseudocode in Algorithm 1.

3.3.2 Mechanism 2: ensemble mode prediction

We train an ensemble of Regressor Chains, each with a random order.
Most of the previously developed ensemble methods (e.g. Random Forests
[Breiman, 2001] and Ensembles of Regressor Chains [Spyromitros-Xioufis
et al., 2016]) use mean averaging to obtain the final predictions. However,
we would like to fit our models on datasets with a multi-modal distribution
and have them identify a mode. Since in this setting, the mean does not
necessarily coincide with a mode, we develop an approach to search for
a mode of distribution. Therefore, instead of averaging, we first apply K-
means clustering [Lloyd, 1982] in order to identify modes, and then produce
the mean of the largest cluster as an estimate of the mode of the predictive
distributions.

An example with two modes is given in Fig. 3.3. An average of the bigger
cluster of predictions better corresponds to a ground-truth value than an
average of all predictions. We select 10 Regressor Chains in an ensemble as
a standard trade-off between the accuracy of prediction and computation
time [Spyromitros-Xioufis et al., 2016].

3.4 Experiments

3.4.1 Methods

Table 3.1 summarizes the methods used in the experiments; all of which
as implemented in Scikit-Learn [Pedregosa et al., 2011]. We experimented
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Figure 3.3: The mmERC method, mechanism 2: average of the largest
cluster (#1) gives a more precise prediction of y = {y1, y2} which is closer

to the true value.

Table 3.1: Regression methods compared in the experiments.

(Meta) Method Base estimator
DT Multi-output Decision Tree –
RF Multi-output Random Forest –
IR (dt) Independent Regressors Decision Tree
IR (rf) Independent Regressors Random Forest
IR (svr) Independent Regressors SVR
RC (dt) Regressor Chain Decision Tree
RC (rf) Regressor Chain Random Forest
RC (svr) Regressor Chain SVR
ERC (dt) Ensembles of Regressor Chains Decision Tree
ERC (rf) Ensembles of Regressor Chains Random Forest
ERC (svr) Ensembles of Regressor Chains SVR
mmERC (dt) Multi-Modal Ensembles of Regressor Chains Decision Tree
mmERC (rf) Multi-Modal Ensembles of Regressor Chains Random Forest
mmERC (svr) Multi-Modal Ensembles of Regressor Chains SVR
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with different base estimators for multi-target methods (as indicated in the
table).

3.4.2 Evaluation

We used two evaluation metrics: average Relative Root Mean Squared
Error (aRRMSE), which is common to use in multi-target regression,

aRRMSE = 1
L

L∑

j=1

√√√√√
∑N

i=1(yij − ŷij)2
∑N

i=1(yij − yj)2 ,

(where ȳj is the mean value of the j-th target in the training data); and
UCF [Burger and Lucka, 2014] – an analog of the 0/1 Loss for regression
problems within given neighbourhood δ of the true values, see Eq. 3.1. For
the experiments, we take δ = 1.0 for the targets scaled normally (with zero
mean and unit variance).

All the methods were evaluated using a 10-fold cross-validation with 90:10
training-test splits.

3.4.3 Datasets

We evaluated our algorithm on 40 synthetic datasets and one real-world
dataset.

We generated 40 = 8 · 5 synthetic datasets as pairwise combinations of
8 distributions for target variables y = {y1, y2}, and 5 distributions for
a feature variable x. Total number of instances varies from 200 to 600.
The clusters c = 0 and c = 1 are generated with Bernoulli distribution
c ∼ B(0.5). The distributions of targets y are Gaussian mixtures form-
ing two clusters and presenting a variety of shapes, illustrated in Fig. 3.4.
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Figure 3.4: Points drawn from eight distributions of the targets y =
{y1, y2} in generated synthetic datasets.
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They vary in standard deviation, number of instances, shape, rotation, and
proximity to each other.

The feature variable x is designed to provide little information about the
targets and thus invoke high predictive uncertainty so that the dependencies
between the targets are even more useful for the model than the feature.
Different distributions of x reflect different degrees of uncertainty about
which cluster the model should choose for a particular sample, summarized
in Table 3.2. In the scenarios A and E, the feature x does not provide
information to which of two clusters y belongs. In the scenarios B, C, and
D, the feature x is generated taking the cluster of y into account. In each
generated synthetic dataset, one of 8 distributions of targets y and one of
5 distributions of feature x are combined.

A real-world dataset (432 instances) was taken from the R package agri-
colae [de Mendiburu and de Mendiburu, 2019] and refers to a native plant
of the Peruvian Andes called yacon (Smallanthus sonchifolius). The data
belongs to the International Potato Center in Lima (Peru). As targets,
we consider two multi-modally distributed features from the dataset: de-
grees brix (density or sugar concentration) and height of the plant. We
add feature x ∼ N (0, 1) which again invokes a big amount of predictive
uncertainty. The distributions of the targets are demonstrated in Fig. 3.5.

3.5 Results and Discussion

An initial investigation indicates that mmERCs achieve generally the best
performance with a parameter value s = 0.5 in Algorithm 1, i.e. taking
half of the training dataset in the second training phase as demonstrated
in Fig. 3.6. The subsequent experiments in this chapter were conducted
with s = 0.5.
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(a) (b)

(c)

Figure 3.5: Distributions of the targets height and brix in the yacon
dataset shown in (A) and (B) have both bi-modal structures. Samples of

the dataset shown in (C) form visibly separated clusters.
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Table 3.2: Distributions of the feature x in generated synthetic datasets.

Group Distribution
A: ∼ U(0, 1) where U stands for uniform distribution

B:




0 if c = 0,

1 if c = 1

C:



∼ U(0, 1) if c = 0,

∼ U(1, 2) if c = 1

D:



N (0, 1) if c = 0,

N (1, 1) if c = 1

E: ∼ N (0, 1)

Figure 3.6: Averaged UCF metric for the mmERC method, measured
across all synthetic datasets and grouped by the value of the s parameter

used in mechanism 1, s ∈ (0, 1].
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The experimental results for the UCF metrics (Table 3.3) show that our
method, mmERC, on average outperforms the independent regressors as
well as standard Regressor Chains with a sequential cascade order. This
is already an important result not found in other Regressor Chains imple-
mentations. Moreover, our proposed mechanism to deal with multi-modal
distributions improves the performance of Ensembles of Regressor Chains
for all base estimators in most of the scenarios. These results are also
illustrated by the Friedman-Nemenyi diagram shown in Fig. 3.7a, where
the rank of the mmERC method is significantly better than for all other
tree-based methods.

As expected, the results under aRRMSE are less optimistic, see Table 3.4
and Friedman-Nemenyi diagram in Fig. 3.7b. However, in Fig. 3.8 we show
that mmERCs recognize clustered distributions better than ERCs both for
Decision Trees and Random Forests as base estimators. The same situation
is observed for the other datasets and other base estimators. We propose
the following explanation: MSE-based metrics penalize choosing the wrong
cluster more than putting estimations in-between of actual clusters since
the distance between prediction and the true value is bigger in the former
case. Thus, when a model recognizes a multi-modal distribution but fails to
choose the right cluster for some points, it can perform worse under MSE-
based metrics than models fitting to a single Gaussian distribution. We,
therefore, argue that this standard choice of the aRRMSE metrics may be
inappropriate in the case of multi-modal distributions and requires further
investigation.

In general, Decision Trees and DT-based models successfully recognize clus-
tered distributions, but in the lack of informative features, they assign clus-
ters randomly. This can be seen in Random Forests (which are an average
of a number of random Decision Trees) results: all models, based on Ran-
dom Forests, put the predictions between the real clusters. Furthermore,
Decision Trees are formed as sets of decision boundaries and thus are not
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Table 3.3: UCF results for the synthetic datasets. For simplicity of
presentation, the results are grouped and averaged by type of x feature
distribution as they reflect different degrees of uncertainty. This simpli-
fication does not affect the average values of metrics and average ranks.
The best value per group is in bold. The results are rounded to 2 decimal
points to display, so minor differences may be not seen in this representa-

tion.

Regressor A B C D E Average AvgRank
DT 0.71 0.50 0.50 0.70 0.73 0.63± 0.01 7.9
RF 0.84 0.47 0.45 0.78 0.84 0.67± 0.04 10.2
IR (dt) 0.79 0.50 0.52 0.74 0.78 0.66± 0.02 11.1
IR (rf) 0.86 0.47 0.47 0.79 0.87 0.69± 0.04 11.0
IR (svr) 0.72 0.40 0.52 0.70 0.72 0.61± 0.02 6.0
RC (dt) 0.74 0.50 0.51 0.70 0.72 0.63± 0.01 8.6
RC (rf) 0.81 0.45 0.45 0.75 0.82 0.66± 0.03 8.8
RC (svr) 0.70 0.40 0.51 0.67 0.71 0.60± 0.02 4.2
ERC (dt) 0.78 0.50 0.49 0.72 0.76 0.65± 0.02 8.6
ERC (rf) 0.83 0.44 0.44 0.76 0.83 0.66± 0.04 8.6
ERC (svr) 0.71 0.40 0.50 0.67 0.72 0.60± 0.02 5.0
mmERC (dt) 0.72 0.50 0.51 0.69 0.71 0.63± 0.01 8.2
mmERC (rf) 0.69 0.43 0.44 0.63 0.67 0.57± 0.02 2.2
mmERC (svr) 0.69 0.40 0.52 0.67 0.68 0.59± 0.02 4.6



Multi-modal Ensembles of Regressor Chains 52

Table 3.4: aRRMSE results for the synthetic datasets. For simplicity
of presentation, the results are grouped and averaged by type of x feature
distribution as they reflect different degrees of uncertainty. This simpli-
fication does not affect the average values of metrics and average ranks.
The best value per group is in bold. The results are rounded to 2 decimal
points to display, so minor differences may be not seen in this representa-

tion.

Regressor A B C D E Average AvgRank
DT 1.46 0.64 0.67 1.38 1.48 1.13± 0.19 12.4
RF 1.17 0.55 0.55 1.11 1.17 0.91± 0.11 6.2
IR (dt) 1.47 0.64 0.69 1.38 1.47 1.13± 0.18 12.8
IR (rf) 1.17 0.55 0.55 1.11 1.17 0.91± 0.11 6.8
IR (svr) 1.10 0.46 0.60 1.02 1.10 0.86± 0.09 2.8
RC (dt) 1.46 0.64 0.69 1.40 1.47 1.13± 0.18 12.6
RC (rf) 1.29 0.53 0.54 1.21 1.30 0.97± 0.16 7.4
RC (svr) 1.13 0.46 0.60 1.05 1.12 0.87± 0.10 3.6
ERC (dt) 1.35 0.63 0.64 1.28 1.36 1.05± 0.14 10.0
ERC (rf) 1.17 0.51 0.52 1.09 1.17 0.90± 0.12 4.8
ERC (svr) 1.12 0.46 0.59 1.03 1.11 0.86± 0.10 2.6
mmERC (dt) 1.42 0.63 0.71 1.40 1.45 1.12± 0.17 12.2
mmERC (rf) 1.20 0.49 0.53 1.11 1.20 0.91± 0.13 5.8
mmERC (svr) 1.16 0.47 0.61 1.06 1.16 0.89± 0.11 5.0
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smooth. Random Forests should be able to solve this issue, but, as we men-
tioned above, do not work well for recognizing multi-modal nature. Our
method, mmERC, improves the performance of Random Forests methods
and outputs a smooth function at the same time.

In the Yacon dataset, we observe the best predictive performance under
UCF for the mmERC models, see Table 3.5. Fig. 3.9a and 3.9b illustrate
the performance of the two models, mmERC (based on Random Forests)
and Decision Trees, respectively. Though graphically it seems that De-
cision Trees better mimic the distribution of the clusters, from the UCF
comparison we imply that they assign these clusters in a more random
way. Fig. 3.9c compares the precision of predictions of these two models
per sample. It shows that our method is more precise on some of the clus-
ters. Though we have not observed a significant advantage of our approach
on real-world datasets, we argue that it performs well on some datasets
with explicit multi-modality, particularly on some subsets of samples.

3.6 Conclusions and Future Work

In this work, we have developed a new method, Multi-Modal Ensembles
of Regressor Chains (mmERC), for multi-target regression. As opposed to
the conventional approaches assuming a uni-modal predictive distribution
approximating Gaussians, our approach is better able to capture the modes
of the distribution. The experimental study compares the performance of
the proposed method, independent regressors, standard Regressor Chains,
and Ensembles of Regressor Chains on 40 multi-modal synthetic and one
real-world datasets.

In empirical evaluation under the UCF metrics, mmERC achieves impor-
tant performance improvement across the multi-modal distributed datasets,
outperforming baseline and state-of-the-art methods. This is unlike the vast
majority of multi-target (and standard single-target) regression approaches
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(a) UCF

(b) aRRMSE

Figure 3.7: Friedman-Nemenyi diagrams comparing the ranking of the
experimentally tested methods. A lower rank is better, statistically indis-

tinguishable methods are connected by a horizontal line.
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Figure 3.8: Models based on DTs and RFs on one of the synthetic
datasets with a feature x ∼ N (0, 1). Black lines connect pairwise true
and predicted values. Black dashed ellipses represent the size of δ-

neighborhood used in UCF metrics.
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Table 3.5: UCF results for the Yacon dataset.
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methods have the same UCF values.

Figure 3.9: Comparison of (A) mmERC (rf) and (B) DT models on
yacon dataset. Predictions of both methods together in (C).
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which target squared-error-based metrics. Our study hints that a choice of
UCF metric for measuring performance can be more adequate than using
standard errors and that this metric deserves further investigation.

In future work, we consider looking at additional evaluation schemas, such
as allowing multiple multi-output predictions (hypotheses) for a single in-
stance. This would allow a greater chance of capturing the true mode, even
when uncertainty is high. Furthermore, a more sophisticated structure of
the chains in the ensembles in order to better exploit dependencies between
the targets and achieve better predictive results.

Additionally, the proposed approach may be evaluated in the concept drift
machine learning tasks, where the relationships between inputs and outputs
in the underlying problem change over time, thus provoking multi-modality
of the target distribution as well as predictive uncertainty.





Chapter 4

Backward inference in
probabilistic Regressor Chains

As discussed earlier in this thesis, state-of-the-art approaches for multi-
target prediction, such as Regressor Chains, can exploit interdependencies
among the targets and model the outputs jointly. However, these models
are often too inflexible to answer queries under constraints such as when
targets jointly comprise a distribution and/or when certain target values
are fixed prior to inference and cannot be incorporated into the modeling of
the other targets. These limitations complicate the practical usage of such
models, particularly in applications where targets are highly dependent and
must be modeled as such. In this chapter, we present a solution to the afore-
mentioned problem as a backward inference algorithm for Regressor Chains
via Metropolis-Hastings sampling. We evaluate the proposed approach via
different metrics using both synthetic and real-world data. We show that it
is able to solve the issue with much lower error than marginal inference (i.e.
ignoring joint modeling). Furthermore, we show that the proposed method

59
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can provide useful insights into a real-world problem, namely in predicting
the distribution of potential natural vegetation.

4.1 Introduction

In Regressor Chains, increasingly used for multi-output prediction, predic-
tions are cascaded across the outputs. This means that the predictions of
the first labels in the chain are used as input features to model the rest of
the chain. Fig. 4.1a illustrates the standard setting of Regressor Chains for
3 targets. It has been well used in the context of multi-label classification
(as Classifier Chains, for binary outputs [Read et al., 2021]). There are
recent successes also in the multi-target regression context with continuous
outputs: for example, Regressor Stacking [Santana et al., 2017], Ensem-
bles of Regressor Chains [Spyromitros-Xioufis et al., 2016; Antonenko and
Read, 2022] (see also Chapter 3), and probabilistic frameworks [Read and
Martino, 2020]. A variety of applications can be targeted with such meth-
ods [Poonawala-Lohani et al., 2021].

However, the above-cited works make a number of standard assumptions:
all outputs are to be predicted, each can be predicted individually, and
those models can be retrained at will and with relative ease. We consider
a new setting that breaks these assumptions, by imposing the following
constraints:

1. Any output may be imputed/fixed prior to prediction;

2. Base regression models cannot be retrained;

3. Outputs satisfy a joint constraint.

We aim at inferring a joint posterior distribution over labels, i.e. proba-
bilistic Regressor Chains, under these constraints.
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y3y2y1

x1 x2

(a)

y3y2y1

x1 x2

(b)

Figure 4.1: Illustration of a Regressor Chain (depicted as a Bayesian
network, where shaded nodes indicate fixed observations) for inputs
x = {x1, x2} and outputs y = {y1, y2, y3}. (A) demonstrates the standard
setting where forward inference is possible; (B) demonstrates challenges we
address: how to propagate imputed label information (label y3) ‘backward’
while maintaining a joint constraint and without training a new structure.
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While training a model with the constrained targets included in the fea-
tures set (i.e. ignoring constraint 2.) may be considered a simpler solution,
we argue that training a new model may not always be easily accessible.
Oppositely, we want to extract as much information as possible from the
model obtained earlier, trained on provided sets of features and targets.
This can be the case, for example, if due to ethical concerns, the data is
not accessible after training the model or computational resources are lim-
ited. Nowadays, more and more datasets are restricted, and, for example,
in federated learning, it is typical to transmit the model while keeping the
data characteristics hidden. This is similar to transfer learning when a pre-
trained model is used for a new task to avoid excessive training or model
tuning.

This problem may be also reformulated as a missing value problem but
with missing labels in the output space. However, we do not discuss here
standard missing value imputation methods as these would not satisfy con-
straint 2., using the previously trained model which predicts the outputs y

from the inputs x.

In this work, we consider the following motivating example of a problem
satisfying the constraints 1.-3. We solve a problem of estimation of the
hypothetical vegetation and land-cover types based on climatic conditions
supposing that no urban activity was present while only data with urban
activity observed is available for the model training. In this setting, we must
fix the proportion of urban to 0 (constraint 1.) in order to query the model
on what types would be present under such conditions. Further, we suppose
that models cannot be retrained (constraint 2.) since, for example, access
to human expertise and/or to the training data used to build the model has
expired, or there is insufficient time or computational resources to retrain
and re-test models (e.g. re-validate for robustness, etc.). Additionally, since
this is an example of compositional data, the outputs comprise a categorical



Backward inference in probabilistic Regressor Chains 63

distribution, and thus their value, for any given input, must sum to 1 (i.e.
constraint 3.).

We remind the reader that y = [y1, . . . , yL] represents the L target com-
ponents of the data. As a categorical distribution (i.e. outputs represent
compositional data) it should be that ∑L

l=1 yl = 1, and yl ≥ 0. Our goal is
to answer queries of the form

p(y¬F |x, yF ), (4.1)

where F ⊂ {1, . . . , L} is a set of fixed/observed outputs, and ¬F =
{1, . . . , L} \ F are the remaining outputs to predict; e.g. y¬F = [y1, y2]
and yF = [y3] in Fig. 4.1b.

A Regressor Chain H = [h1, ..., hL] involves a model (regressor) hl for each
of the outputs y1, . . . , yL providing prediction

ŷl = hl(x, y1, . . . , yl−1)

which is, typically, a function of probability density function (pdf)

p(yl |x, y1, . . . , yl−1), (4.2)

e.g. the expected value

ŷi = Eyi∼p(yi |x,y1,...,yi−1)[yi].

This allows us to provide a prediction for all outputs,

ŷ = [ŷ1, . . . , ŷL] = [h1(x), h2(x, ŷ1), . . . , hL(x, ŷ1, . . . , ŷL−1)].

Recall that each prediction becomes a feature for the following model in the
‘chain’. By this mechanism, Regressor Chains (as well as Classifier Chains,
e.g. [Read et al., 2011]) aim to model the outputs together, or jointly.
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At the same time, independent models will inherently make an assumption
of independence as they model each ŷl = hl(x) separately, and thus the
joint constraint is not satisfied, so independent models are not applicable
in the given setting.

If the pdf is explicitly modeled (which is the case of Probabilistic Regressor
Chains [Read and Martino, 2020]), Regressor Chains also provide the joint
posterior distribution:

p(y |x) =
L∏

l=1
p(yl |x, y1, . . . , yl−1). (4.3)

Returning to the example model pictured in Fig. 4.1, the corresponding
joint distribution is given by p(y |x) = p(y1 |x) ·p(y2 |x, y1) ·p(y3 |x, y1, y2).
However, here we face the challenge posed by the interaction of constraints
1. (fixed output) and 3. (joint constraint): if y3 is a fixed observation,
forward inference along the chain cannot be completed while respecting the
other constraints; specifically the term p(y3 |x, y1, y2). A naive approach
of simply predicting ŷ1 and ŷ2 and then normalizing them to meet the
constraint ∑L

l=1 ŷl = 1 is not valid, because it answers the query p(y¬F |x)
but not the target query p(y¬F |x, yF ).

We propose a method, Metropolis-Hastings sampled Regressor Chains
(mhsERC), which is able to provide a solution to the aforementioned prob-
lem by combining Regressor Chains and Metropolis-Hastings sampling for
backward inference in the prediction step. We apply our approach, mh-
sERC, on synthetic and real-world datasets and find that:

• In the case of synthetic data, the resulting distribution provided by
mhsERC is very close to the ground-truth, for a given imputation.
The model naturally provides a distribution for each instance in ad-
dition to a predicted mean value;
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• In three multi-target regression datasets, we provide values for one
target explicitly and compare predictions of the other targets. We
conclude that mhsERC successfully infers missing targets, given other
targets held fixed as observations, and reaches significantly better per-
formance than the baseline methods;

• In the real-world climate and land-cover data, we were able to extract
insights regarding the potential distribution of vegetation, after fixing
the percentage of urban cover to zero.

The rest of the chapter is organized as follows. After summarizing the
background and related work in Section 4.2, we present our approach in
Section 4.3. Data and evaluation metrics are presented in Section 4.4.
After presenting the results and their discussion in Section 4.5, we draw
conclusions in Section 4.6.

4.2 Related work

Although there exist a variety of methods for multi-target regression (for ex-
ample, Predictive Clustering Trees [Blockeel et al., 2000], Regressor Chains
and Ensembles of Regressor Chains [Spyromitros-Xioufis et al., 2016], Re-
gressor Stacking [Santana et al., 2017], etc.), these approaches are typically
used in a standard predictive setting and do not directly target joint pre-
diction of targets when some of the output values are provided before the
prediction.

In [Read and Martino, 2020], Regressor Chains were further developed into
a probabilistic framework, however only ancestral, or forward, inference
along the chain is available which does not respond to the set constraints
1.–3. Also, the authors did not propose how to use non-probabilistic base
classifiers such as Decision Trees.
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The given problem (recall example in Fig. 4.1b) can be represented as a
Bayesian Network, specifically a Hybrid Bayesian Network [Salmerón et al.,
2018] which can handle continuous variables during inference as opposed to
classic Bayesian Networks. However, learning the structure of a Bayesian
Network is extremely costly and inference options are limited, normally cor-
responding to linear-Gaussian models or approximate methodologies based
on sampling, and variational inference.

The problem setting involving the distributional constraint, with missing
value, has been called ‘structurally incomplete’ by [Beigaitė et al., 2022];
but authors here use a neural network approach that can be built arbi-
trarily. Oppositely, we develop a probabilistic inference approach under
Regressor Chains. The general setting for predicting a composition of out-
puts is known in the statistics literature as ‘compositional data analysis’
[Aitchison, 2005].

As an example of a real-world problem involving constraints 1.–3, we con-
sider the prediction of potential vegetation distribution in the absence of
urban activity. A similar setting was considered in [Beigaitė et al., 2022].
In our work, we also face the issue of the evaluation of ground-truth distri-
bution for comparison, since the goal is to explore alternative hypotheses.
Our solution is to study the probabilistic challenge of deriving a joint dis-
tribution directly; whereas the authors of [Beigaitė et al., 2022] focus on the
accuracy of predicting dominant vegetation types. Another important dif-
ference is that we consider the additional constraint of tackling the problem
at inference time, rather than selecting different training regimes.

In ecology and biogeography, a related research question concerns the in-
ference of potential natural vegetation; the anticipated state of mature
vegetation under specific environmental conditions, without any human in-
tervention [Chiarucci et al., 2010]. In recent years, statistical and machine-
learning techniques have gained popularity for their application in con-
structing such models [Hemsing and Bryn, 2012; Hengl et al., 2018; Raja
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et al., 2018] but, in these works, the focus is on exploring the relationship
from climatic input observations to the targets, rather than the probabilis-
tic relationship among the targets, as we do.

4.3 Our method: Metropolis-Hasting sam-
pled Regressor Chains

As mentioned in Section 4.1, we target inferring the probability defined by
Eq. (4.1). In other words, we want to evaluate the probability

π(ŷ) = p(ŷ¬F | ŷF , x̂)

for any particular ŷ and x̂, where ŷF are fixed and ŷ¬F may vary. By the
definition of condition probability,

π(ŷ) = p(ŷF ∪¬F , x̂)
p(ŷF , x̂) = ΠL

l=1p(ŷl | ŷl−1, ..., ŷ1, x̂)
p(ŷF , x̂)

∝ ΠL
l=1p(ŷl | ŷl−1, ..., ŷ1, x̂),

The first important question is how to evaluate probabilities in the right-
hand side of the last expression, p(ŷl | ŷl−1, ..., ŷ1, x̂). For this goal, we
assume that for each base estimator hl, the corresponding distribution may
be presented as a normal distribution, and it is possible to obtain its pa-
rameters, the mean µ and standard deviation σ (see Algorithm 2). These
parameters may be inferred, for example,

– directly from the model for Bayesian regression models;

– by bootstrap [Abdar et al., 2021] (non-probabilistic, but ensembled
base models, like Random Forest) with an empirical distribution;

– by Monte Carlo Dropout [Abdar et al., 2021];
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– by perturbation of input (shallow Monte Carlo Dropout).

In our work, we use Random Forests and calculate the mean and the stan-
dard deviation for the predictions of individual trees from the ensemble.

Another important issue is that while we assume that we are able to eval-
uate this probability for any point ŷ, we need an explicit method for
sampling from this distribution for modeling it. Here we propose to use
the Metropolis-Hastings (MH) sampling [Metropolis et al., 1953; Hastings,
1970] as a simple standard sampling method, though other sampling ap-
proaches may be applied. In the MH algorithm (summarized as pseudocode
in Algorithm 3), a random walk {y[t]}t=0...T , each iteration proposes a new
estimate y′ by adding random normal noise to the previous estimate y[t].
The new estimate y′ is evaluated by the distribution probability function
π(y′) and transition function q(y[t], y′) and accepted as a new step y[t+1] if
a randomly generated r ∼ U(0, 1) is smaller than the acceptance ratio

α = min

1,

π(y′) · q(y[t], y′)
π(y[t]) · q(y′, y[t])


 .

In the scope of this work, we assume that the transition function q may be
considered symmetrical and thus may be eliminated from the last formula.

To summarize our approach, we generate a targeted distribution for each
instance by following these steps:

1. An initial first point of a random walk y[0] is selected randomly (e.g.
equal to 0);

2. On each iteration, a new estimate y′ is proposed by adding random
noise to the previous step y[t] and fixing y′

F to the corresponding
values;

3. Acceptance ratio α = min
(

1, π(y′)
π(y[t])

)
is calculated, where π(ŷ) =

ΠL
l=1p(ŷl | ŷl−1, ..., ŷ1, x̂), each probability in the product is calculated



Backward inference in probabilistic Regressor Chains 69

as pdf of the normal distribution obtained from base estimators of the
Regressor Chain;

4. The proposed estimate y′ is accepted as y[t+1] if a randomly gener-
ated r ∼ U(0, 1) is smaller than the acceptance ratio α; otherwise,
y[t+1] = y[t];

5. The steps 2.-4. are repeated T times.

Note that the proposed method, Metropolis-Hastings sampled Regressor
Chains (mhsRC), is not specific to any particular chain order and can be
applied to a Regressor Chain of any order with any set of fixed outputs. If
an Ensemble of Regressor Chains was given as a prior trained model, then
we can perform the procedure with all individual chains in the ensemble and
then average the predictions. We will further call this approach Metropolis-
Hastings sampled Ensembles Regressor Chains (mhsERC).

4.4 Experiments

We remind the reader that our goal is to estimate Eq. (4.1). To evaluate
possible solutions of this problem, we perform the following experiments.
First, we generate synthetic data where all distributions (joint, marginals),
including Eq. (4.1), are fully known; therefore we compare the distributions
directly. Then, we perform experiments on real-world data where we take
values of fixed targets yF directly from data and evaluate predictions for
the other targets y¬F . Finally, we use real-world data and expert intuition
to make conclusions with regard to Eq. (4.1), given hypothetical (that is,
not from the data) values of yF .
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Algorithm 2 Evaluate the probability of the proposed estimate
1: procedure π(proposed estimate y′)
2: for l in 1, ..., L do
3: µ, σ ← mean and std of hl(x̂, ŷ1, ..., ŷl−1)
4: pl ← pdf(y′

l) for N (µ, σ)
5: π = ΠL

l=1pl

Algorithm 3 Metropolis-Hastings sampled Regressor Chains
1: procedure mhsRC(T iterations)
2: y[0] ← 0 ▷ First step of random walk
3: for 0 < t < T do
4: y′ ← y[t] +N (0, σpr) ▷ Propose new y′

5: ▷ (σpr = 0.01 for normalized data)
6: α = min

(
1, π(H,y′)

π(H,y[t])

)
▷ Calculate acceptance ratio

7: r ∼ U(0, 1) ▷ Sample random number from [0, 1)
8: if r < α then
9: y[t+1] ← y′ ▷ Accept proposed point

10: else
11: y[t+1] ← y[t] ▷ Refuse proposed, keep previous
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4.4.1 Data

Synthetic dataset

In this work, we present a synthetic dataset with one feature x and tar-
gets y = {y1, y2, y3}, where yF = {y3} and the ground-truth distribution
p(y¬F | yF , x) is known. Dependencies between the parameters and vari-
ables are illustrated by a Bayesian diagram in Fig. 4.2. We first sample three
target variables of interest, yy3=0

1 ∼ α, yy3=0
2 ∼ 1− α, and y3 = 0, where α

is a bi-modal mixture of normal distributions, see Fig. 4.3a, and y1, y2 are
normalized afterwards so that 0 ≤ yy3=0

1 , yy3=0
2 ≤ 1 and yy3=0

1 + yy3=0
2 = 1.

This gives us P (y1 | y3 = 0) and P (y2 | y3 = 0).

After that, the joint distribution is generated: for each instance,

y1 = yy3=0
1 · (1− p),

y2 = yy3=0
2 · (1− q),

y3 = yy3=0
1 · p + yy3=0

2 · q,

where p ∼ N (0.1, 0.1) and q ∼ N (0.5, 0.2), respectively (taking the abso-
lute value if negative is generated). This significantly shifts the distribution
of the y2 variable when compared to yy3=0

2 , see Fig. 4.3b. The x feature is
generated by adding noise to the parameter α and further linear transfor-
mation: x = −20 · (α + ε) + 10, ε ∼ N (0, 0.1).

This synthetic dataset may be illustrated by a vegetation distribution ex-
ample, where y1, y2, and y3 variables correspond to snow, grass, and urban,
respectively; each instance presents a tile on the earth’s surface. As ur-
ban activity is more likely to be settled in grass type, snow and grass are
not equally affected by the presence of humans. In this setting, we ob-
serve y1 and y2 in the presence of urban and are interested in evaluating
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ε α

x

yy3=0
1 yy3=0

2
y3 = 0

y1 y2 y3

p q

Figure 4.2: A diagram representing the generation of synthetic data.
Grey nodes correspond to parameters with known distributions, and white
nodes correspond to generated variables. While variables x, y1, y2, and y3
are given for model training, the goal is to query yy3=0

1 and yy3=0
2 (high-

lighted with a dashed line).
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(a) Ground-truth distributions of snow P (y1 | y3 = 0) and grass P (y2 | y3 = 0)
types before adding urban; temperature P (x).

(b) Observed distributions of snow P (y1), grass P (y2), and urban P (y3).

(c) Distribution of all vegetation types
P (y1, y2, y3) on simplex, y1 + y2 + y3 = 1

Figure 4.3: Synthetic dataset.



Backward inference in probabilistic Regressor Chains 74

P (y1 | y3 = 0) and P (y2 | y3 = 0), i.e. vegetation distribution in the absence
of urban.

Real-world benchmark data

Subsequently, we use three real-world multi-target regression datasets.
A compositional Arctic lake dataset [Aitchison, 2005] describes the dis-
tribution of sand, clay, and silt (3 targets) in 39 water samples, on different
depths (1 feature). The Concrete Slump dataset [Yeh, 2007] has three
targets that describe three properties of concrete (slump, flow, and com-
pressive strength) and seven features presenting concrete ingredients in 103
samples. The Energy Building dataset (Enb) [Tsanas and Xifara, 2012]
has two targets, heating load and cooling load requirements of buildings
(i.e. energy efficiency), and eight features presenting building parameters
for 768 instances.

For evaluation on all three datasets, we split the data into train and test
subsets (80:20, 5-fold cross-validation), and in the prediction phase provide
explicitly the values of the first target yF = [y1]. The metrics are calculated
for the predicted targets y¬F = [y2, . . . ].

Vegetation data

Finally, we apply our method to a dataset describing the distribution of land
cover globally to infer a possible vegetation distribution in the absence of
urban activity (i.e. force the corresponding classes to 0 explicitly). The set
of land cover classes we aim at predicting is derived from the Moderate Res-
olution Imaging Spectroradiometer MCD12Q1 dataset [Friedl et al., 2019]
for the year 2018 and represents land cover as defined by the International
Geosphere-Biosphere Programme cover classification scheme [Loveland and
Belward, 1997].
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Figure 4.4: The predominant land cover class per global grid cell. In our
prediction problem, each cell is represented by a categorical distribution

over all types; only the maximum type within each cell is mapped.
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We use 19 bioclimatic variables as predictive features, derived from the
WorldClim database v2.0 [Fick and Hijmans, 2017]; these 19 variables
represent ecologically relevant means, minima, and maxima in temper-
ature and precipitation, averaged for the period 1970–2000. Both land
cover targets and bioclimatic features were obtained from the Eco-ISEA3H
database [Mechenich and Žliobaitė, 2023], a compilation of publicly-available
Earth observation (EO) datasets characterizing global climate and biogeog-
raphy.

The database is built on a geodesic discrete global grid system [Sahr et al.,
2003], a systematic spatial framework of equal-area hexagonal cells. We
used resolution 3H09, in which cells measure approximately 2600 km2, and
retained only terrestrial cells in our analysis (56,821 instances or approxi-
mately 28% of total cells globally). The proportions of each grid cell covered
by each of the 16 land cover classes (summing to 1.0) serve as model output.
The predominant cover class within each grid cell is mapped in Fig. 4.4; the
16 terrestrial classes (as well as water cover) are listed in the map legend.

We are interested in inferring the fractional distribution of natural land
cover classes in the absence of three human-modified cover classes, namely
croplands, urban and built-up lands, and cropland/natural vegetation mo-
saics (mapped together in red in Fig. 4.4).

4.4.2 Evaluation

In the synthetic dataset both ground-truth distributions P (y1 | y3 = 0)
and P (y2 | y3 = 0) and observed distributions P (y1), P (y2), and P (y3) are
known. The task of a model is to reconstruct the ground-truth distribution
from the observed distribution and measure the distance between them. In
the multi-target regression datasets, we provide values for the first target
explicitly and evaluate the prediction of the other targets.
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While the proposed algorithms, mhsRC and mhsERC, naturally provide a
distribution per instance, we will use the means of these distributions to
compare these approaches with the baselines.

As evaluation metrics, we use Mean Squared Error (MSE), Uniform Cost
Function (UCF), and Wasserstein Distance (WD). Mean Squared Error cal-
culates averaged squared loss, and, for the ground-truth {yi} and predicted
{ŷi}, i = 1, . . . , N ,

MSE = 1
N

N∑

i=1
(yi − ŷi)2.

Uniform Cost Function [Burger and Lucka, 2014] may be considered as an
analog of the 0/1 Loss for regression problems within a given neighborhood
δ of the true values:

UCF (δ) = 1
N

N∑

i=1





0 if ∥yi − ŷi∥2 < δ
2 ,

1 otherwise,

where δ is an adjustable parameter. For the experiments, we take
δ = 0.5. Wasserstein distance is a distance function defined between prob-
ability distributions and may be seen as the minimum amount of “work”
required to transform one distribution to another,

WD =
∫ +∞

−∞
|Ŷ − Y |,

where Ŷ and Y are cumulative distribution functions for the vectors ŷ and
y, respectively.

We compare the proposed inference method built on Regressor Chains with
Random Forests as base estimators to several baselines. First, we compare
to a Regressor Chain with direct order [y1, ..., yL], when the target with
fixed values (y1) comes first in the chain, and thus it is possible to cascade
the fixed values directly, without backward inference. Second, we evaluate
several marginal models that don’t take the joint constraint into account:
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– The fixed targets are set to corresponding values, other targets are
re-normalized, no trained model is used (redistrib.) – applicable only
for the synthetic dataset;

– Ensembles of Regressor Chains (ERC);

– Multi-target Random Forests (mtRF);

– Individual single-target Random Forests (stRF);

where we plug in the fixed values after prediction and re-normalize the
targets so that their sum is equal to one.

The proposed methods, mhsRC and mhsERC, are run with T = 1000
iterations.

4.5 Results and discussion

Synthetic data

Table 4.1 shows the comparison of different methods for the synthetic data,
where a model should ‘uncover’ the ground-truth distribution without ur-
ban activity. First, to support the choice of Regressor Chains for a pre-
dictive task, we evaluate performance of all methods in a standard setting
when prediction from x to y = {y1, y2, y3} is required. To this end, we
perform 5-fold cross-validation and observe that Regressor Chains and En-
sembles of Regressor Chains outperform single- and multi-target Random
Forests.

Second, we compare empirically the predictions of ŷ1, ŷ2 when y3 = 0 by the
models listed above and ground-truth y1, y2 when y3 = 0. We observe that
the metrics values differ significantly for different chain orders and a chain
[3,1,2] shows the best result: this is unsurprising as we plug in directly
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(a)

(b) (c)

(d) (e)

Figure 4.5: (A) Re-discovering of ground truth P (y2 | y3 = 0) distribu-
tion in synthetic data. Note, that y1 | y3 = 0 is equal to 1− y2 | y3 = 0 (by
nature of compositional data) so technically we are evaluating distribu-
tions of both targets. (B-E) Predicted per-instance distributions for four

individual instances.
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the constraint to the first model of the chain and further propagate its
inference. For some of the orders ([2,1,3], [2,3,1]) the task is more difficult.

However, Metropolis-Hastings sampled Ensemble of Regressor Chains (mh-
sERC) containing all possible 6 chain orders shows high-performing results
when compared to ‘naive’ models without joint inference. Fig. 4.5a also
demonstrates graphically the resulting distributions. The inference of the
mhsERC model is very close to the original bi-modal symmetric distribu-
tion of grass and snow. Examples of individual per-instance distributions
of ŷ2 | y3 = 0 (for given x) are presented in Fig. 4.5b–4.5e. Again, we see
that the predicted distributions tend to center around the desired value of
ground-truth y2 | y3 = 0.

Multi-target datasets with one target provided explicitly

For three multi-target regression datasets, Arctic Lake [Aitchison, 2005],
Slump [Yeh, 2007], and Enb [Tsanas and Xifara, 2012], the values of the
target y1 are provided explicitly, and other targets are to be predicted. The
experiments are performed in a 5-fold cross-validation setting: models are
trained on 80 percent of the data, and for 20 percent of the data values of
the target y1 are provided in the prediction phase.

Table 4.2 shows the comparison of the newly proposed method, mhsERC,
Regressor Chain with direct order [y1, ..., yL] (when fixed values of y1 are
simply propagated via chain), and three marginal methods (ERC, mtRF,
stRF). We observe that mhsERC obtains significantly better results than
the marginal methods and close to the ones of Regressor Chains with direct
orders with regard to all three metrics. The statistical significance is illus-
trated by the Friedman-Nemenyi diagrams in Fig. 4.6 for all three metrics,
the mhsERC method ranked along with Regressor Chains with direct order
and significantly higher than other methods.
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Table 4.1: Synthetic data. First, results for classic cross-validated re-
gression (x → y) are provided to compare the performance of all models
in a standard setting. Then, the models are evaluated for prediction with
y3 = 0 vs. ground truth y1, y2 | y3 = 0; a smaller value is better. Regressor
Chains without backward inference [RC] with y3 as a first target in a chain
are used as benchmarks. Best value in bold, second best value underlined.
Orders of Regressor Chains (permutations of 1, 2, 3) are given in square

brackets.

x→ y x→ y1, y2 | y3 = 0
Model MSE MSE WD UCF
mhsRC [1,2,3] 0.016 0.019 0.052 0.099
mhsRC [1,3,2] 0.015 0.011 0.038 0.073
mhsRC [2,1,3] 0.017 0.169 0.132 0.281
mhsRC [2,3,1] 0.017 0.029 0.114 0.272
mhsRC [3,1,2] 0.017 0.007 0.016 0.054
mhsRC [3,2,1] 0.017 0.011 0.039 0.085
mhsERC 0.015 0.010 0.027 0.037
stRF 0.018 0.018 0.115 0.172
mtRF 0.018 0.019 0.115 0.176
ERC 0.016 0.016 0.108 0.117
redistrib. – 0.024 0.122 0.213
RC [3,1,2] 0.017 0.009 0.038 0.053
RC [3,2,1] 0.017 0.009 0.036 0.055

Table 4.2: Multi-target regression data, predictions when the first target
is provided explicitly; smaller value is better. Best value in bold, second

best value underlined.

Arctic Lake Slump Enb
Model MSE WD UCF MSE WD UCF MSE WD UCF
mhsERC 0.002 0.030 0.000 0.177 0.205 0.806 0.016 0.065 0.152
RC direct 0.002 0.029 0.000 0.173 0.188 0.825 0.015 0.068 0.132
mtRF 0.008 0.039 0.150 0.373 0.446 0.951 0.025 0.063 0.187
stRF 0.008 0.041 0.150 0.322 0.415 0.951 0.020 0.069 0.174
ERC 0.008 0.036 0.125 0.333 0.408 0.971 0.027 0.069 0.193
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(a) MSE

(b) WD

(c) UCF

Figure 4.6: Friedman-Nemenyi diagrams comparing the ranking of the
experimentally tested methods for multi-target regression data, predic-
tions when the first target is provided explicitly. A lower rank is better,
statistically indistinguishable methods are connected by a horizontal line.



Backward inference in probabilistic Regressor Chains 83

Vegetation data

Prediction of vegetation from climate.

First, we point out that Ensemble of Regressor Chains is a well-performing
model for the prediction of vegetation types from climate. Land areas
worldwide are highly imbalanced in terms of dominant land cover types
and their mixtures. For example, deciduous needleleaf forest, the least
represented of the 16 land cover types, is dominant over less than 0.0005%
of the globe, whereas grassland is the most common, being the dominant
land cover type on more than 20% of the planet’s tiles; i.e. cells dominated
by these two types of land cover have errors which vary up to 1000%.

A standardized squared error metric would encourage the model to ignore
the former since the squared error would be relatively minuscule. We thus
choose Mean Absolute Error (MAE) as a metric to prevent the model from
ignoring minority cover types and not penalize the model too hard for
making non-zero estimates on minority cover types. The experiments are
done under 10-fold cross-validation, and splits are designed to account for
spatial correlations between neighboring grid cells and avoid information
leakage between train and test partitions. The evaluation under MAE is
shown in Table 4.3.

While single- and multi-target Random Forests show the best performance
in cross-validation experiments with regard to MAE, we are not aware
if it is possible to force these models to modify particular targets in the
prediction phase. Ensembles of Regressor Chains run only slightly worse,
and we propose a natural mechanism to impute particular targets with
particular values for any chain in the ensemble, while other targets take
this value into account.

No urban activity. We set the values of three variables (croplands, ur-
ban and built-up, cropland/natural vegetation mosaic) to zero and apply
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Table 4.3: 10-fold cross-validation, comparing different multi-label mod-
els for vegetation prediction. Best value in bold.

Model MAE std
stRF 0.047 5.07e-05
mtRF 0.045 4.55e-05
RC (with RFs) 0.061 6.12e-05
ERC (with RFs) 0.050 4.87e-05

the newly designed method, mhsERC. Fig. 4.7 demonstrates the predicted
vegetation distribution in the absence of human activity for two densely
populated large areas, Europe and South Asia, as well as for four selected
small areas within these two. Subjectively, the results appear visually plau-
sible. There are no noticeable anomalies. This adds support to our claim
that our method can be used flexibly for real-world tasks. Although, in-
herently, there can be no ground-truth evaluation for such a task, we can
take confidence in the relatively high performance on the synthetic and
non-hypothetical real-world tasks investigated earlier.

4.6 Conclusion

In this chapter, we introduce a particular challenge in the multi-output
setting: some targets come observed in the inference phase, and the option
to re-train models is not available, yet the outputs must be nevertheless
provided under a joint constraint. We study this setting in the context
of Regressor Chains and adapt them to the given scenario by employing
Metropolis-Hastings backward inference hereby enabling to leverage pre-
trained models without re-training under different chain orders. Naturally,
the proposed method provides an empirical distribution for each prediction
instead of a single expected value.
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(a) Europe

(b) Europe, 49◦N 2◦E (c) Europe, 59◦N 25◦E

(d) Asia

(e) Asia, 25◦N 110◦E (f) Asia, 20◦N 80◦E

Figure 4.7: Plots 4.7a and 4.7d show the prevalent vegetation type
per global grid cell when human activity is present (left) and when it is
hypothetically absent (right; where we fixed urban to 0 and re-predicted).
Plots 4.7b, 4.7c, 4.7e, and 4.7f show vegetation distribution per grid cell,

with (observed) and without (predicted) human activity.
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We show that the result can be adapted and evaluated in several use cases.
It performed out-competitively on synthetic data (with controlled ground
truth) as well as in a real-world challenge of predicting potential vegetation
in the absence of human activity. We conclude that the proposed method
successfully solves the task, allowing flexibility and applicability of Re-
gressor Chains algorithms beyond their predictive performance in standard
multi-target regression settings.



Chapter 5

Missing value imputation as a
multi-label task

Missing values are a common problem in data science and machine learning.
Removing instances with missing values is a straightforward workaround,
but this can significantly hinder subsequent data analysis, particularly when
features outnumber instances (p≫ N). There are a variety of methodolo-
gies proposed in the literature for imputing missing values, most of them
proceeding iteratively in a coordinate-ascent scheme. Denoising Autoen-
coders, for example, have been leveraged efficiently for imputation. But
neural-network approaches have been relatively less effective on smaller
training sets. To this end, we propose Autoreplicative Random Forests
(ARF) via a multi-output learning approach, which we introduce in the
context of a framework that may impute via either an iterative or proce-
dural process. Experiments on several low- and high-dimensional datasets
show that ARF exhibits better imputation performance than its competi-
tors. We also propose ARF in a probabilistic framework, where the confi-
dence values are provided over different imputation hypotheses, therefore

87
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maximizing the utility of such a framework in a machine-learning pipeline
targeting predictive performance.

5.1 Introduction

Missing values are a common problem and an important issue in the do-
main of data science and machine learning. Most off-the-shelf statistical
and machine learning methods cannot learn from data containing missing
values, and such values must be imputed, or entire instances removed, prior
to analysis. When many values are missing, considering only instances with
complete information (no missing values) can lead to a significant loss of
information or even an empty dataset.

Indeed, a special challenge is when missing values occur in many or most
training samples. This is more likely to occur when there are sufficiently
more features (p) than samples (N), i.e. when p≫ N , which means that re-
moving samples amplifies the imbalance. Examples of this scenario include
medical and bioinformatics arrays, classification problems in astronomy,
tool development for finance data, and weather prediction [Johnstone and
Titterington, 2009].

Denoising Autoencoders (DAE) is a state-of-the-art method for missing
value imputation [Vincent et al., 2008] which treats missing values as ‘noise’.
They may be trained only on complete data (ignoring missing values)
or with missing values randomly imputed and then iteratively re-trained,
and data re-imputed, successively until convergence, e.g. [Seo et al., 2022;
Wright, 2015]. PCA has been used in a similar way [Dray and Josse, 2014];
indeed, PCA can be seen as a special (linear case) of auto-encoding.

Another well-known approach is Multiple Imputation with Chained Equa-
tions (MICE) [van Buuren and Groothuis-Oudshoorn, 2011]. MICE also
imputes the missing values randomly, so as to have a complete ‘training set’,
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then successively trains and maps values (imputing) in a column-wise leave-
one-out scheme; and repeats this process until some convergence criterion is
met. This whole process can be repeated to obtain multiple candidate val-
ues for imputation (hence the ‘multiple imputation’; but this ensemble-like
approach can also be applied generally with other model-based imputa-
tion algorithms). Indeed, the well-known MissForest imputer [Stekhoven
and Bühlmann, 2011] can be seen as a special case of MICE (with Ran-
dom Forest chosen as a base learner to do the column-wise training and
imputation).

In this work, we combine the best of these two worlds: what we call the
procedural approach (e.g. DAE) which is a one-shot imputation (each value
imputed only once); vs what we call the iterative approach, (e.g. MICE)
in which values are successively re-imputed until convergence. We first
propose a unifying framework for missing value imputation within which
to set these two strategies.

Building in this framework, we produce a novel method, Autoreplicative
Random Forests (ARF) that can be carried out in either a procedural or
iterative fashion. To the best of our knowledge, using multi-label models
in an autoreplicative way without explicit encoding has not been widely
studied in the literature. We empirically demonstrate the advantages of
this method, including specifically its ability to effectively impute data of
a small sample size.

Furthermore, while there exist many methods for missing value imputation,
we observe from the literature that the overwhelming majority do not keep
the information about the uncertainty of imputation. This means, that once
imputed, all values are treated equally and independently from the fact if
they were observed or imputed. This may bias the forthcoming analysis.
To this end, we propose a probabilistic imputation method, distributional
iterative Autoreplicative Random Forests (ditARF), that not only imputes
the missing values but also provides their uncertainty.
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In this work, we consider specifically categorical features as a multi-label
multi-output classification problem. In general, we expect that this strat-
egy may be generalized to continuous outputs as well. However, prelimi-
nary results show that some deeper studies for regression imputation are
required. This is not surprising as this is often seen in multi-output lit-
erature: classification methods are not always straightforward to transfer
to regression prediction. As a compromise solution, we may suggest a dis-
cretization technique where the continuous values are split into bins and
a problem is further tackled as a classification task. Despite the appar-
ent loss of information, such an approach is well known for its accuracy
improvement [Dougherty et al., 1995].

Like the methods we compare to, we assume that data is Missing Com-
pletely At Random (the ‘missingness’ occurs entirely independently from
feature and class values) [Santos et al., 2019].

To sum up, we contribute to the state-of-the-art with the following:

• We propose an efficient method, Autoreplicative Random Forests
(ARF), in three different variants, for missing value imputation;

• We propose a general framework to be used to illustrate and compare
ARF vs a variety of competitors; namely one of procedural vs iterative
imputation strategies;

• We propose Distributional ITerative ARF (ditARF); a probabilistic
approach that may provide confidence over imputation hypotheses,
both under the assumptions of marginal (individual) vs joint (combi-
nation) imputations;

• We show the effectiveness of ARF (in particular vs deep learning meth-
ods) on both standard-dimensional and high-dimensional low-sampled
data (p≫ N).
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• We provide a comprehensive experimental study in which we assess
the capabilities of the missing value imputation technique. Moreover,
we also compare the difference, in terms of accuracy, between a generic
classifier learned from a ground-truth dataset and an imputed dataset.

The rest of the chapter is organized as follows. Together with summarizing
the background and related work, we present an imputing framework uni-
fying different methods in Section 5.2 and then expand it with a group of
new methods, pARF, itARF, and ditARF, in Section 5.3. The results and
their discussion as well as complexity analysis are described in Section 5.4.
In Section 5.5, we draw conclusions and future work.

5.2 A General Framework for Missing Value
Imputation

In this section, we describe a general framework unifying different ap-
proaches to missing value imputation; namely the procedural vs iterative
strategies.

5.2.1 Preliminaries

In the scope of this chapter, we focus on missing values in the features, and
to this end, omit targets Y and define a dataset D = {X∪X̃}, consisting of
N rows (instances) and p columns (features); with missing values denoted
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as variables x̃i,j. For example (N = 5, p = 3),

D =




x̃1,1 x̃1,2 x1,3

x2,1 x̃2,2 x2,3

x̃3,1 x3,2 x3,3

x4,1 x4,2 x4,3

x5,1 x5,2 x5,3




where we have xi,j to stand for an existing value in the dataset (realization
of a random variable Xi,j), and x̃i,j to imply that such a value is not yet
known/realized (i.e. it is missing). When there is no need for this distinction
(e.g. referring to a particular instance of p features with both missing and
observed values), we useD = {xi}N

i=1. We denote ẋ specifically for instances
where missing values have been imputed. A model h (e.g. Autoencoder,
Random Forest, . . . ) is parametrized by θ, and pt(ẋ[t]

i | ẋ[t−1]
i , θ) is the

probability that random vector x̃i takes value ẋ
[t]
i at iteration t.

5.2.2 Procedural vs Iterative approaches

In this work, we particularly distinguish between the ways how the missing
values may be imputed: procedurally or iteratively. Procedural methods
impute values only once, based on the observed values. Iterative methods
first impute values randomly and then update these imputations until some
convergence criterion is met. Note, that a method belonging to one of these
families, might be easily adaptable for another one.

The procedural methods range from rather simple ones such as replace-
ment with the mean, mode, or median statistics [Little and Rubin, 2019] to
more sophisticated machine learning techniques such as k-Nearest Neigh-
bours (kNN) [Schwender, 2012] and Cascade Imputation (CIM) [Montiel
et al., 2018]. While the kNN method processes the data row-wise, i.e. ex-
tracting information from the k instances that are most similar to the one
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(a) Classic Autoencoder

(b) Denoising Autoencoder

(c) Autoencoder without an explicit encoding

Figure 5.1: An illustration of (A) Classic Autoencoder (with hidden
representation H), (B) Denoising Autoencoder (input is corrupted with
noise or missing values as X ∪ X̃ before encoding), and (C) Autoencoder
without an explicit encoding (as we use in our work). In all cases, the goal
is to minimize the difference between input X and its reconstruction Z.



Missing value imputation as a multi-label task 94

whose missing values need to be replaced, CIM first rearranges data, so
that missing values may be imputed block by block.

In the deep learning domain, the aforementioned Denoising Autoencoders
may be successfully used for imputation after training on the complete
instances. Classical Autoencoders implemented within neural networks
architecture consist of Encoder and Decoder structures as illustrated in
Fig. 5.1a. While the inner structure of hidden layers can be very different,
the typical common property is having at least one narrow middle layer H

to restrict the model to learning only important information from the data.
Optimizing hidden layers implies a search for some inner patterns in the
data.

For Denoising Autoencoders, a widely-used step in the learning phase is
inducing artificial missingness into complete rows and training the model
to reproduce the original input (see Fig. 5.1b). A general schema for the
procedural methods is given in Algorithm 4. The following example be-
low illustrates one-shot row-wise procedural imputation (blue represents
training samples):




x̃1,1 x̃1,2 x1,3

x2,1 x̃2,2 x2,3

x̃3,1 x3,2 x3,3

x4,1 x4,2 x4,3

x5,1 x5,2 x5,3




⇒




ẋ
[1]
1,1 ẋ

[1]
1,2 x1,3

x2,1 ẋ
[1]
2,2 x2,3

ẋ
[1]
3,1 x3,2 x3,3

x4,1 x4,2 x4,3

x5,1 x5,2 x5,3




The approach of iterative imputation takes the general schema of coordinate
ascent, with special cases including expectation maximization (EM) and
classification maximization (CM, i.e. ‘hard EM’) [MacKay, 2003; Dempster
et al., 1977] where the expectation step E is replaced by a hard classification
step (an actual value is imputed), and the maximization step M refers to
training. Inspired by this idea, many missing value imputation algorithms
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start from a random or data-driven (mode, mean, median, ...) initial im-
putation so that any classifier can be trained on the entire dataset. Next,
the missing values are predicted and the model is relearned after every im-
putation. This process is repeated until some convergence criteria are met.
Algorithm 5 summarizes this schema and the following example illustrates
the approach (all samples are used for training):




x̃1,1 x̃1,2 x1,3

x2,1 x̃2,2 x2,3

x̃3,1 x3,2 x3,3

x4,1 x4,2 x4,3

x5,1 x5,2 x5,3




⇒




ẋ
[0]
1,1 ẋ

[0]
1,2 x1,3

x2,1 ẋ
[0]
2,2 x2,3

ẋ
[0]
3,1 x3,2 x3,3

x4,1 x4,2 x4,3

x5,1 x5,2 x5,3




⇒ ...⇒




ẋ
[t]
1,1 ẋ

[t]
1,2 x1,3

x2,1 ẋ
[t]
2,2 x2,3

ẋ
[t]
3,1 x3,2 x3,3

x4,1 x4,2 x4,3

x5,1 x5,2 x5,3




Denoising Autoencoders, mentioned before in a procedural setting, may
be also implemented as an iterative method, starting from randomly im-
puted missing values and then iteratively re-imputing the missing data un-
til convergence is reached, e.g. [Dray and Josse, 2014; McCoy et al., 2018].
Principal Component Analysis (PCA) is also widely used as an imputa-
tion method and may be considered as a version of Autoencoder with a
linear activation function. PCA may be also considered as a special case of
Single Value Decomposition (SVD) [Troyanskaya et al., 2001]. The latter
calculates the k most significant eigenvectors and then imputes the missing
values using a low-rank SVD approximation estimated by an Expectation-
Maximization algorithm.

All iterative methods listed above (DAE, SVD, PCA) may be consid-
ered multi-output predicting models, as they impute all missing values si-
multaneously. Oppositely, Multivariate Imputation by Chained Equations
(MICE) is also iterative but single-output, as it processes features con-
sequently in a leave-one-out manner. The MICE method is very flexible
with regard to the base model, i.e. any per-feature estimator is possible.
The MICE method is commonly used for different types of data and, in
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Algorithm 4 General framework for procedural imputation
1: procedure Procedural Imputation(D = {X ∪ X̃})
2: h← Train({x}) ▷ Train the model with complete data
3: {ẋ} ← h({x̃}) ▷ Predict the missing values with h

Algorithm 5 General framework for iterative imputation
1: procedure Iterative Imputation(D = {X ∪ X̃}, ε)
2: {ẋ}t=0 ← R(x̃) ▷ Random imputation of missing values
3: while ∆imp > ε do
4: ht ← Train({x} ∪ {ẋ}t−1)
5: {ẋt} ← ht({ẋ}t−1)
6: ∆imp ← convergence({ẋ}t, {ẋ}t−1, ht) ▷ Compute convergence

criteria

Table 5.1: Some example methods as specific parametrizations of a gen-
eral framework where Strategy CW = column-wise, RW = row-wise, BW
= block-wise; p = procedural, it = iterative; SO = single-output, MO
= multi-output. SI = single(standard)-imputation, MI = multiple im-
putation where ‘-’ indicates that it could be implemented, but we are not
aware of any reference doing so; with Ensemble (MICE) or via a predictive

posterior Distribution (x̃ ∼ p(· | ẋ)) being options.

Method Type SO/MO Strategy MI Reference
Mode p SO CW No [Little and Rubin, 2019]
kNN p MO RW No [Schwender, 2012]
MICE it SO CW Ens. [van Buuren and Groothuis-Oudshoorn, 2011]
CIM p SO BW - [Montiel et al., 2018]
DAE p MO RW - [Vincent et al., 2008]
DAE it MO RW - [Seo et al., 2022]
PCA/SVD it MO RW - [Dray and Josse, 2014; Troyanskaya et al., 2001]
ARF p MO RW - This work
ARF it MO RW - This work
ditARF it MO RW Dist. This work
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particular, clinical data, and can be considered state-of-the-art for missing
value imputation, but we have not found substantial evidence of using the
MICE method for high-dimensional datasets, as the computational cost
drastically increases in this setting. The CIM method mentioned above
may be considered a procedural version of MICE. Table 5.1 summarizes
the characteristics of the methods discussed.

We would also like to mention the work [Wolputte and Blockeel, 2020]
which uses a Random-Forest-based predictor to perform imputation in the
prediction phase assuming complete data in the training phase. We think
that with some extra effort, one could adapt this method to the setup
described above and thus incorporate it into the framework, we leave this
question for future research.

We need to mention also the idea of applying Gaussian Processes for missing
value imputation proposed in [Jafrasteh et al., 2023]. Gaussian Processes
are non-parametric models and output predictive distributions for target
variables, which can be also considered as uncertainty estimates. Sparse
Gaussian Processes have been applied for missing value imputation lever-
aging the idea of the MICE method where the features are processed one
by one in a cascaded fashion. While obtaining promising results, the pro-
posed method has a much higher computational cost both for training and
prediction than other baselines including computationally expensive MICE.
Also, in [Jafrasteh et al., 2023], Gaussian Processes are applied for contin-
uous variables and assume a normal distribution for each which may not
always be the case.

Obviously, multiple variations of the methodologies shown above can be
discussed. Although we believe that these are out of the scope of this work,
we think that is worth sharing some insights. In procedural imputation, the
main characteristic is that the imputation is only done once for each missing
value. Following this idea, we could introduce the row-wise imputation
in which we increasingly impute the missing values through time and we



Missing value imputation as a multi-label task 98

relearn the imputation model after each imputation. Following this idea, we
would add more true values to the training dataset after every imputation,
but, at the same time, we might supply incorrect imputations to the model
as ground truth. Similar to the previous approach, there is the column-wise
imputation that matches the MICE imputation strategy.

5.2.3 Other Framework parameters

Estimator

For the MICE method, any single-output estimator can be used. As a de-
fault parameter, we use Random Forests (of 10 trees each) as they proved to
be a robust and stable method, though any other classifier may be provided
manually to the framework. Among multi-output methods, we propose in-
cluding Autoencoders and PCA as a standard choice and Autoreplicative
Random Forests as a novelty (see Section 5.3).

Initial imputation

For iterative methods, an initial pre-starting imputation is needed. There
are several possibilities for that: impute with modes of the values or impute
randomly with the observed values with a uniform distribution or distri-
bution taken from the observed values. We use random imputation with
uniform distribution over the observed values as a default parameter.

Number of iterations

For iterative methods, the re-predictive process stops when the convergence
is reached. We measure convergence as a difference between new and pre-
ceding imputations. If this difference is smaller than a provided parameter
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ε, set as default to 0.005, then the last imputed dataset is returned as
the final estimation. However, to keep the overall complexity feasible, we
provide a maximum number of iterations parameter, set as default to 10.

5.3 Proposed Approach:
Autoreplicative Random Forests

Following the description of the general imputation framework, we want
first to introduce a new imputation approach, Autoreplicative Random
Forests, and second to propose its distributional extension.

5.3.1 Autoreplicative Random Forests

Although apparently largely overlooked in the literature, we have noticed
that any other model designed for multi-output, multi-label, prediction can
be used instead of a neural network as an Autoencoder. One such example
is a combination of Decision Trees [İrsoy and Alpaydin, 2016] where the
first Decision Tree is used as an encoder, and the second one is used in
a vice versa manner as a decoder. Meanwhile, this idea can be simplified
even more: in our approach, we will use a multi-output Random Forest as
an estimator.

Random Forests have been selected since they naturally are multi-label
and multi-class classifiers and they proved to be competitive and robust
classifiers in several works [Wood et al., 2023]. Such an approach can
facilitate the optimization process for the model on data containing a small
number of samples, and at the same time, Decision Trees and Random
Forests are both efficient and simple to understand and interpret. To the
best of our knowledge, this simple but efficient idea has not been well
studied in the literature. We argue, that however it deserves attention
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and can be further investigated. Applying this idea, we suggest further
Autoreplicative Random Forests.

It is worth noting, that while we choose Random Forests as a well-known
and stable multi-label method with good performance, this idea may be
developed by using other multi-label methods, such as e.g. Classifier Chains
[Read et al., 2011], Multilabel k Nearest Neighbours [Zhang and Zhou,
2007], Random k-Labelsets [Tsoumakas and Vlahavas, 2007], Conditional
Dependency Networks [Guo and Gu, 2011].

The setting is illustrated in Fig. 5.1c. In the procedural approach, we first
select complete cases X of the entire dataset D = {X∪X̃}, corrupt it man-
ually with missing values (uniformly distributed, following the proportion
of missing values in the original dataset), and train an Autoreplicative Ran-
dom Forest to reproduce Z ∼ X, i.e. fill missing values by minimizing loss
function between Z and X. Then the fitted model can be used to replace
actual missing values. In the iterative version, values should be first im-
puted randomly, then a Random Forest is re-trained in an iterative manner,
on iteration t receiving D = {X ∪ X̃} as an input, learning to reproduce
Z ∼ Ẋ t−1 as output and storing prediction Ẋ t as a new imputation.

5.3.2 Distributional Iterative ARF (ditARF)

Missing value imputation does not always result in optimal accuracy when
that imputed dataset is used to train a predictive model, because imputa-
tion accuracy and predictive accuracy are separate goals. The inevitable
imperfections introduced by the imputation process and, more importantly,
the inability to distinguish between imputed (estimated) and true values
at training time are two important reasons for this.

To address this issue, methods such as MICE were proposed with the tech-
nique of ‘multiple imputation’, that is repeating the imputation several
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times independently (essentially, bootstrapping) in order to obtain multi-
ple plausible values and run further analysis on these datasets.

Here we propose a distributional variant of ARF (ditARF) which provides a
probability distribution instead of a single imputed value, for each missing
value. Thus, encapsulating and expressing the uncertainty regarding such
an imputation.

As occurs in virtually every ensemble method, the votes of the different
base classifiers can be treated as probabilities for the predicted instance.
We leverage this idea and introduce ditARF. Similar to itARF introduced
in Section 5.3, ditARF learns and predicts missing values iteratively. How-
ever, at every iteration, the instances are weighted by the output joint
probability. The main goal of ditARF is to provide statistical information
along with the predicted missing value. To that end, we approximate the
true joint distribution.

Formally, a multi-output Random Forest predicts p(x̃ |x) = ∏p
j=1 p(x̃j |x).

The imputed missing value can be produced equivalently as
ẋj = argmaxj p(x̃j |x). However, this makes the assumption that each
imputed value is conditionally independent of the others for a given in-
stance; which may not be the case. In certain application domains such
as medicine, it may be a critical mistake to make this assumption [Gerych
et al., 2021].

Consider the example of Fig. 5.2, where the joint distribution p(x̃) only
gives nonzero probability to two values (x1x2 = 00 and x1x2 = 11), yet the
marginal probability (as would be estimated by Random Forest) indicates
the equal probability for all combinations (00, 01, 10, 11). This means that
even though the dataset does not contain values for two of the possible
combinations, a Random Forest would produce value combinations that
could never exist in real data.
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Figure 5.2: Illustrating the difference between the joint and marginal
distributions of two binary missing-value variables x̃ = {x̃1, x̃2} of an
instance. The marginal distribution (the same distribution covers both
variables, having been marginalized from the joint) indicates that all com-
binations of values 0 and 1 are equally likely, even though only two such
combinations would occur. This indicates the potential importance of joint

modeling.
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For example, the Label Powerset (LP) method [Tsoumakas and Katakis,
2007] transforms each combination of output values into a unique class and
thus naturally models the labels jointly. However, such an approach could
not be applied in the iterative setting as initial imputation creates value
combinations that may not exist in the data while closing the opportunity
to learn other possible combinations in future iterations.

We can imagine adapting, for example, a less strict and more generalized
version of the LP approach, the Random k-Labelsets method [Tsoumakas
and Vlahavas, 2007], to tackle this issue, as well as inducing some ran-
domness at each iteration. However, these possible solutions are out of the
scope of this work and we leave them for future research.

In the discrete case that we study, we are implicitly providing estimates of
a posterior mode; either on the marginal distribution (j-th feature),

ẋj = argmax
x̃i,j

p(x̃j | x) (5.1)

and/or the joint distribution (full row/vector) x̃ ∼ P ,

ẋ = argmax
x̃

p(x̃ | x). (5.2)

In the following, we develop a probabilistic framework for ARF, which
we call ditARF (distributional iterative Autoreplicative Random Forests),
which provides an estimate of these distributions.

The proposed solution is closely related to other well-known iterative meth-
ods such as the Expectation Maximization (EM) algorithm [Dempster et al.,
1977] and to more general coordinate-ascent methods [Wright, 2015]. Such
methods find the maximum likelihood parameters for the corresponding
model based on data. In the case of the EM, it can be used to fit a mixture
of Gaussian distribution models while the coordinate-ascent method just
performs a linear optimization in the log-likelihood function by iteratively
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learning and predicting data. DitARF also maximizes the log-likelihood
after each iteration, which is computed as

logL(θ | D) =
N∑

i=1

pmax
j=1

log(p(x̃i,j |xi)). (5.3)

Similar to the EM algorithm, ditARF considers a set of weights w for each
instance. This corresponds to

wi =
∏

j

max p(x̃i,j |xi).

These weights are used when learning a Random Forest classifier as weights
for each instance, thus giving higher weights for instances where the model
is more confident about the imputation. Following the strategy of the
iterative version of ARFs, a Random Forest is iteratively re-trained until it
reaches convergence in terms of likelihood. When this occurs, an estimate of
the joint posterior distribution x̃[t] ∼ P is obtained and hence, we provide
p(x̃i,j |xi) as a measure of uncertainty along with the imputed missing
value ẋi,j.

5.4 Experimental Study

In order to compare the performance of the proposed solution, we perform
several experiments on real-world datasets obtained from the UCI reposi-
tory [Dua and Graff, 2017] as well as on three Single Nucleotide Polymor-
phism (SNP) datasets which we have truncated to 1000 features for the
sake of computation memory. These datasets contain categorical multino-
mial variables. The datasets used in the experiments are summarized in
Table 5.2. So as to properly simulate missing values in real-world situa-
tions, we followed the MCAR strategy by corrupting a percentage of the
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Table 5.2: Datasets used in experiments, p features, N samples.

Name p N Reference
Mushroom 22 8,124 [Dua and Graff, 2017]
Soybean 35 307 [Dua and Graff, 2017]
Primary Tumor 17 339 [Dua and Graff, 2017]
Lymphography 18 148 [Dua and Graff, 2017]
Congressional Voting Records 16 435 [Dua and Graff, 2017]
Financial Well-Being Survey 212 6,394 [CFPB, 2017]
SNP Maize 1,000 247 [Negro et al., 2019]
SNP Eucalyptus 1,000 970 [de Lima et al., 2019]
SNP Wheat 1,000 388 [Reif, 2020]
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data values. These percentages range from 1% to 30%. We refer to this
parameter as the Missing Value Ratio (MVR) throughout the text.

For the purpose of evaluating the proposed solution, we consider marginal
accuracy, which is also known as Hamming Score, among the imputed val-
ues; and joint accuracy also referred to as Exact Match in the literature.
Formally, marginal accuracy can be defined as

1
Nm

1
pm

Nm∑

i=1

pm∑

j=1
1(ẋi,j, xi,j), (5.4)

where Nm and pm refer to the number of instances and the number of
features with missing values, respectively. Similarly, joint accuracy can be
defined as

1
Nm

Nm∑

i=1
1(ẋi,xi). (5.5)

Finally, since missing value imputation is usually a preprocessing step for
further classification tasks, we compare the classification accuracy obtained
with a Random Forest classifier trained on full data, and on imputed data.
The experiments have been run 5 times and the average of the scores of
each run is used.

We compare our method against a variety of well-known literature ap-
proaches. Autoencoder and PCA methods are implemented using the
scikit-learn [Pedregosa et al., 2011] package. We tested the performance
of both procedural and iterative Autoencoders in three modifications: with
one hidden layer of 0.1p neurons, one hidden layer of 0.2p neurons, or three
hidden layers of 0.2p, 0.1p, and 0.2p neurons respectively, where p is the
number of features. The model with one hidden layer of 0.1p neurons has
shown slightly better performance, although the difference was not signif-
icant. The results of this model are further presented. The PCA method
was also realized as a neural network with one hidden layer of 0.1p neurons
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but with an identity activation function. The kNN method is presented
with the number of neighbors k = 2 selected during inner validation.

In order to select the best-performing parameters, we have internally run a
grid search over the parameters of Autoreplicative Random Forests. As a
result, we opted to use 20 trees (base classifiers) per forest (no significant
difference compared to other values), each tree trained on all provided fea-
tures (better performance than with default parameter), a minimal number
of samples per split equal to 5. Criterion (gini/entropy) has not shown an
influence on the method’s performance.

5.4.1 Results and discussion

Imputation performance

Table 5.3 summarizes the performance of all methods measured by the
marginal accuracy, i.e. percentage of correctly imputed values out of the
missing ones. Table 5.4 shows joint accuracy, i.e. percentage of the in-
stances, where all values were imputed correctly. MICE results are not
shown for the datasets with a large number of features because of excessive
computation time.

In low-dimensional datasets, the MICE method remains very competitive.
Its time consumption is significantly higher than for all other methods but
stays feasible when the number of features is relatively small. The procedu-
ral and iterative ARFs show competitive performance. For the Mushroom
dataset, pARF shows the best results when the missing value ratio is small
but fails when it is big and thus there is not enough data to train a re-
liable model. In most cases, the itARF method along with its ditARF
modification runs second best. In high-dimensional datasets, procedural
methods cannot be used when all instances come affected by missing val-
ues. The itARF and ditARF methods systematically outperform other
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Table 5.3: Marginal accuracy. The best accuracy per column is in bold.
The second best accuracy is underlined. All results are rounded to 3 dp.

For [it]erative (includes MICE) and [p]rocedural versions of methods.

MVR 0.01 0.05 0.1 0.2 0.3 0.01 0.05 0.1 0.2 0.3 0.01 0.05 0.1 0.2 0.3

Mushroom Soybean Tumor
Complete cases 80.1% 32.3% 10.1% 0.7% 0.04% 69.7% 13.7% 1.0% 0% 0% 83.8% 38.9% 15.0% 1.2% 0%

MICE 0.649 0.698 0.730 0.753 0.767 0.867 0.873 0.875 0.838 0.823 0.775 0.749 0.778 0.749 0.725
ditARF 0.748 0.763 0.747 0.727 0.699 0.830 0.845 0.818 0.768 0.755 0.639 0.660 0.679 0.653 0.658
itARF 0.741 0.742 0.746 0.727 0.684 0.809 0.844 0.829 0.776 0.777 0.604 0.653 0.665 0.643 0.645
pARF 0.767 0.763 0.764 0.684 0.514 0.774 0.780 0.656 – – 0.572 0.654 0.705 0.687 0.698
itAE 0.605 0.587 0.595 0.563 0.566 0.667 0.718 0.699 0.682 0.673 0.702 0.708 0.742 0.726 0.727
pAE 0.574 0.517 0.500 0.530 0.525 0.667 0.725 0.642 – – 0.702 0.701 0.743 0.683 0.606
itPCA 0.613 0.611 0.612 0.607 0.596 0.710 0.742 0.721 0.688 0.692 0.702 0.712 0.739 0.727 0.727
pPCA 0.609 0.585 0.571 0.532 0.490 0.686 0.729 0.662 – – 0.702 0.610 0.717 0.588 0.522
kNN 0.642 0.659 0.678 0.670 0.569 0.731 0.774 0.768 0.729 0.697 0.526 0.549 0.594 0.559 0.507

Votes Lymphography Financial Survey
Complete cases 85.3% 42.2% 18.5% 1.3% 0% 81.8% 40.5% 14.9% 2.7% 0% 11.8% 0% 0% 0% 0%

MICE 0.888 0.774 0.772 0.758 0.768 0.562 0.677 0.621 0.633 0.643 – – – – –
ditARF 0.712 0.708 0.697 0.684 0.703 0.669 0.556 0.608 0.590 0.610 0.687 0.674 0.670 0.663 0.655
itARF 0.765 0.703 0.696 0.682 0.689 0.677 0.546 0.609 0.583 0.606 0.676 0.670 0.673 0.664 0.656
pARF 0.653 0.722 0.720 0.712 – 0.708 0.586 0.610 0.513 – 0.668 – – – –
itAE 0.612 0.634 0.591 0.531 0.553 0.462 0.480 0.538 0.461 0.465 0.622 0.618 0.616 0.606 0.589
pAE 0.594 0.616 0.537 0.596 – 0.462 0.466 0.553 0.465 – 0.518 – – – –
itPCA 0.676 0.634 0.620 0.603 0.556 0.431 0.517 0.535 0.466 0.462 0.649 0.647 0.645 0.636 0.623
pPCA 0.629 0.528 0.537 0.548 – 0.446 0.493 0.550 0.472 – 0.625 – – – –
kNN 0.824 0.615 0.667 0.625 0.641 0.346 0.406 0.436 0.425 0.447 0.490 0.489 0.491 0.490 0.487

SNP Maize SNP Eucalyptus SNP Wheat
Complete cases 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

MICE – – – – – – – – – – – – – – –
ditARF 0.837 0.819 0.798 0.755 0.694 0.936 0.918 0.908 0.848 0.782 0.923 0.931 0.920 0.904 0.920
itARF 0.857 0.846 0.835 0.825 0.817 0.935 0.933 0.929 0.915 0.901 0.942 0.940 0.937 0.933 0.934
pARF – – – – – – – – – – – – – – –
itAE 0.724 0.724 0.717 0.717 0.715 0.715 0.723 0.720 0.715 0.706 0.931 0.929 0.931 0.931 0.931
pAE – – – – – – – – – – – – – – –
itPCA 0.725 0.694 0.672 0.645 0.624 0.832 0.850 0.854 0.849 0.831 0.895 0.890 0.883 0.876 0.856
pPCA – – – – – – – – – – – – – – –
kNN 0.758 0.753 0.749 0.746 0.736 0.912 0.912 0.909 0.903 0.897 0.914 0.914 0.913 0.912 0.911
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Table 5.4: Joint accuracy. The best accuracy per column is in bold.
The second best accuracy is underlined. All results are rounded to 3 dp.

For [it]erative (includes MICE) and [p]rocedural versions of methods.

MVR 0.01 0.05 0.1 0.2 0.3 0.01 0.05 0.1 0.2 0.3 0.01 0.05 0.1 0.2 0.3

Mushroom Soybean Tumor
Complete cases 80.1% 32.3% 10.1% 0.7% 0.04% 69.7% 13.7% 1.0% 0% 0% 83.8% 38.9% 15.0% 1.2% 0%

MICE 0.622 0.563 0.480 0.307 0.191 0.845 0.765 0.622 0.339 0.177 0.763 0.663 0.606 0.436 0.264
ditARF 0.731 0.666 0.541 0.321 0.154 0.802 0.714 0.545 0.266 0.106 0.619 0.584 0.501 0.289 0.180
itARF 0.725 0.643 0.534 0.306 0.130 0.777 0.719 0.552 0.251 0.113 0.581 0.579 0.488 0.271 0.170
pARF 0.752 0.669 0.565 0.280 0.039 0.742 0.614 0.290 – – 0.548 0.556 0.531 0.305 0.208
itAE 0.582 0.462 0.349 0.136 0.046 0.613 0.538 0.378 0.141 0.048 0.685 0.622 0.557 0.370 0.261
pAE 0.553 0.390 0.253 0.114 0.038 0.613 0.543 0.264 – – 0.685 0.612 0.563 0.313 0.111
itPCA 0.591 0.492 0.374 0.179 0.069 0.662 0.559 0.396 0.149 0.084 0.685 0.628 0.546 0.370 0.261
pPCA 0.587 0.463 0.328 0.114 0.031 0.637 0.550 0.289 – – 0.685 0.508 0.525 0.211 0.087
kNN 0.620 0.527 0.420 0.240 0.100 0.700 0.594 0.427 0.188 0.068 0.500 0.434 0.378 0.205 0.098

Votes Lymphography Financial Survey
Complete cases 85.3% 42.2% 18.5% 1.3% 0% 81.8% 40.5% 14.9% 2.7% 0% 11.8% 0% 0% 0% 0%

MICE 0.885 0.701 0.631 0.470 0.376 0.527 0.560 0.424 0.262 0.105 – – – – –
ditARF 0.703 0.636 0.551 0.363 0.272 0.655 0.453 0.424 0.201 0.086 0.454 0.038 0.001 0.000 0.00
itARF 0.770 0.633 0.554 0.343 0.229 0.645 0.437 0.416 0.215 0.088 0.442 0.035 0.002 0.000 0.000
pARF 0.642 0.646 0.573 0.400 – 0.682 0.473 0.421 0.168 – 0.432 – – – –
itAE 0.600 0.538 0.403 0.230 0.096 0.455 0.389 0.336 0.105 0.019 0.384 0.021 0.001 0.000 0.000
pAE 0.582 0.535 0.388 0.248 – 0.455 0.374 0.336 0.125 – 0.270 – – – –
itPCA 0.667 0.551 0.457 0.287 0.136 0.418 0.431 0.339 0.110 0.022 0.412 0.029 0.001 0.000 0.000
pPCA 0.618 0.428 0.355 0.213 – 0.455 0.409 0.336 0.137 – 0.383 – – – –
kNN 0.818 0.528 0.495 0.269 0.237 0.318 0.297 0.248 0.103 0.034 0.259 0.006 0.000 0.000 0.000
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(a) Marginal accuracy

(b) Joint accuracy

Figure 5.3: Friedman-Nemenyi diagrams comparing the ranking of the
experimentally tested methods. A lower rank is better, statistically indis-

tinguishable methods are connected by a horizontal line.
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methods available. The Friedman-Nemenyi diagrams demonstrate the sta-
tistical significance of the methods’ performance difference in Fig. 5.3, con-
firming that three ARF-based methods lie in the high spectrum of methods
ranking along with the MICE method.

The ditARF method computes the probabilities of imputed values p(x̃ |x)
on every iteration and uses these to provide a measure of confidence per in-
stance as sample weights of the model on the next iteration. To understand
better its behavior, we illustrate probabilities of having a ‘1’ class changing
through iterations on Fig. 5.4. We observe that after several iterations each
probability ‘converges’ to a certain level and continues oscillating around
it. From this evidence, we conclude that the model is not overfitting (oth-
erwise we would expect converging to 0 or 1) and indeed can provide a
distribution for possible values for imputation.

Fig. 5.5 shows the difference in classification accuracy of a Random For-
est classifier learned on ground-truth data, without missing values, and a
Random Forest learned on an imputed dataset. First, we observe that im-
putation quality and further classification quality do not strictly correlate.
This poses the question if the best strategy would be to do imputation and
classification simultaneously to optimize the performance of both. Second,
in some cases, the proposed ARF method facilitates classification compared
to the MICE method even when imputation accuracy is lower. Third, we
see in the Votes dataset that the ditARF method in some cases provides
significantly better accuracy even when compared to the itARF method,
which supports the further need of considering prediction confidence during
the imputation step.

Time complexity analysis

The complexity of a Decision Tree is O (pN log N) with regard to the num-
ber of features p and the number of instances N . If all the trees in a Random
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(a) Lymphography (b) Votes

(c) Tumor (d) Soybean

Figure 5.4: Probabilities of predicting a ‘1’ class for the first 20 missing
values on 4 different datasets. One line corresponds to one imputed missing

value.

Figure 5.5: Classification accuracy gain/loss when compared to a com-
plete dataset (smaller value = better).
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Figure 5.6: Empirical results on time complexity (in seconds) for im-
putation methods. Here, ditARF is not specifically included since it is

already covered by iterative ARF (itARF).
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Forest are trained on all features, the total complexity of the forest remains
the same. In the MICE method, a separate model is trained per feature,
thus for one iteration, the complexity of the MICE method with Random
Forest base estimator becomes quadratic O

(
p2N log N

)
.

At the same time, with a multi-label Random Forest, the total complexity
remains linear. Thus, both the methods itARF and pARF provide linear
complexity with regard to the number of features, as the complexity of
one forest is only multiplied by the number of iterations which typically is
low as convergence is reached soon. These theoretic estimations are well
supported in the simulation study, see Fig. 5.6. We empirically compare the
time complexity of the imputation methods on subsets of the Eucalyptus
dataset under the MCAR scenario with 10% missing values. The subsets
are selected as the first ps features of the original dataset, 10 ≤ ps < 100.

5.5 Conclusions and future work

In this work, we describe a general framework for missing value imputation
and we deeply analyze the literature on missing value imputation schemes.

In order to accurately impute missing values, we propose multi-output,
multi-label, Autoreplicative Random Forests (ARFs) in three different vari-
ants. First, we propose procedural ARF (pARF) that leverages the idea
of DAEs for missing value imputation that only impute once the missing
values. Second, we propose iterative ARF (itARF). The proposed itARF
approach works as a deterministic iterative imputation method that not
only obtains competitive results to the state-of-the-art methods but also
drastically outperforms them in terms of computational time. Moreover,
we focused on the necessity of providing a measure of uncertainty with re-
spect to the imputed missing values, and we proposed the distributional
itARF (ditARF) which works similarly to the EM algorithm and estimates
the posterior distribution.
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To evaluate the proposed solution, we have performed an extensive evalu-
ation of the proposed and previously existing methods on low- and high-
dimensional datasets in which we included a variety of datasets from the
UCI repository plus three SNP datasets. As can be seen, the proposed so-
lutions drastically outperform existing literature approaches when p≫ N .
Finally, we have also tested the difference between training a Random For-
est classifier for an imputed dataset and ground-truth data. The results
show that the obtained accuracy with the classifier learned in ARF meth-
ods are good estimates since they obtain similar results to the classifier
learned with ground-truth data.





Chapter 6

Missing value imputation in
genomics data

Single Nucleotide Polymorphisms (SNP) data is essential in genetic stud-
ies. Typically, such data is prone to missing values, and removing instances
with missing values can adversely affect the quality of further data anal-
ysis, thus imputation methods are required. While in human studies a
reference genome panel of high quality may be an efficient solution, in non-
human settings such panels are often not available. While deep learning is
a state-of-the-art approach for imputation in high-dimensional data, exist-
ing methods still require enough complete cases to be trained on, which is
often unavailable in real-world problems. In this work, we propose Chains
of Autoreplicative multi-label Random Forests which impute missing values
based only on the information extracted from the presented data, are com-
putationally effective, and work well for high-dimensional and low-sampled
data. Experiments on several SNP datasets show that our algorithm effec-
tively imputes missing values and exhibits better performance than stan-
dard algorithms that do not require additional reference panels. In this
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work, the algorithm is implemented specifically for SNP data. Still, it can
easily be adapted for other cases of missing value imputation in biological
data, e.g. gene expression arrays.

6.1 Introduction

Genome-wide association studies (GWAS) allow the detection of associa-
tions between genetic variants and traits. Typically they study associations
between Single-Nucleotide Polymorphisms (SNPs) and complex phenotypes
such as traits and/or diseases. GWAS investigate the whole genome, as op-
posed to methods that study a small number of pre-selected genetic regions.
A standard coding for values in SNP datasets is 0, 1, and 2 for variants
AA, Aa, and aa respectively, where allele A corresponds to the prevalent
variant in the population and allele a to the minor one.

Due to linkage disequilibrium [Browning and Browning, 2007; Chen and
Shi, 2019], neighboring features can correlate to each other, and taking
such dependencies into account is helpful for missing value imputation. At
the same time, some long-distance correlations (across the genome) are also
possible, though rare.

As discussed earlier in Chapter 5, missing values are a common problem in
the domain of data science, and SNP datasets are also prone to a missing
value problem due to a variety of reasons, such as deviations from the
Hardy-Weinberg equilibrium, an abundance of rare variants, and missing
features in combining different datasets in meta-studies [Song et al., 2020].
Within this study, we assume that missing data is Missing Completely At
Random as it depends on external factors rather than observed/unobserved
values.
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A typical SNP dataset contains a number of features (positions on the
genome) greatly exceeding the number of samples (individuals in the pop-
ulation of the study), and all or most of the samples may be affected by
missing values. Most off-the-shelf statistical and machine learning meth-
ods cannot handle missing values, and such values must be imputed, or
the whole instance or row removed, before the actual data analysis. When
many values are missing, considering only instances with complete infor-
mation can lead to a loss of necessary information and can yield a very
poor or even empty dataset.

For SNP data, imputation methods are traditionally split into reference-
based and reference-free methods. Reference-based techniques require a
reference panel based on whole-genome sequencing samples and show the
advantage of using large datasets with complete data as well as addi-
tional information such as linkage patterns, mutations, and recombination
hotspots [Das et al., 2018]. While reference-based methods may be consid-
ered a state-of-the-art approach in well-studied species, e.g. humans, these
reference panels are often not available in many other cases. The differences
between the populations within one panel should also always be taken into
account. These facts necessitate the search for reference-free methods that
incorporate only information from the data itself.

Reference-free methods include common statistical imputation techniques
such as replacement with mode statistics [Little and Rubin, 2019], k Near-
est Neighbours (kNN) [Schwender, 2012], Singular Value Decomposition
(SVD) [Troyanskaya et al., 2001], MissForest [Stekhoven and Bühlmann,
2011], and logistic regression. Recently developed deep learning techniques
have also been applied for imputation, e.g. Denoising Autoencoders [Chen
and Shi, 2019] method. Below we present the listed methods in more detail.

Mode [Little and Rubin, 2019]. For each feature, a mode of non-missing
values, i.e. the most frequent value, is estimated, and the missing values
are imputed with this mode.
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k-Nearest Neighbors (kNN) [Schwender, 2012]. The imputation pro-
cedure is based on the weighted k-Nearest Neighbors algorithm. The al-
gorithm looks for the k samples that are most similar to the one whose
missing values need to be replaced and uses these k neighbors to impute
the missing values. For experiments, we used the knncatimpute function
implemented in scrime R package.

Singular Value Decomposition (SVD) [Troyanskaya et al., 2001]. This
method calculates the k most significant eigenvectors and then imputes
the missing values using a low-rank SVD approximation estimated by an
Expectation-Maximization algorithm. For experiments, we used
IterativeSVD function implemented in fancyimpute [Rubinsteyn and Feld-
man, 2016] python package.

MissForest [Stekhoven and Bühlmann, 2011]. The MissForest method
works in an iterative manner, similar to the MICE method discussed in
Chapter 5, by predicting missing values by Random Forests trained on
the observed features. The MICE and missForest methods are commonly
used for different types of data and, in particular, clinical data, and can be
considered state-of-the-art for missing value imputation, but we have not
found big evidence of using these methods for high-dimensional datasets,
as they become very costly with the rise of the number of features. In our
empirical study, we try to adapt the MICE method for SNP data but do
not obtain promising results (see Section 6.3).

Denoising Autoencoders (DAE) [Vincent et al., 2008; Chen and Shi,
2019]. Recently developed deep learning techniques have also been applied
for genotype imputation, e.g. Sparse Convolutional Denoising Autoencoder
(SCDA) [Chen and Shi, 2019] method. We remind the reader that the
basic idea of both Autoencoders and Denoising Autoencoders is discussed in
Chapter 5 and illustrated in Fig. 5.1a and Fig. 5.1b, respectively. Denoising
Autoencoders have been successfully applied to address the missing data
problems in various fields [Vincent et al., 2008]. In [Chen and Shi, 2019]
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the authors suggest Sparse Convolutional Denoising Autoencoders (SCDA)
to impute missing values in SNP datasets. Sparsity is required due to
the high dimensionality of the features space which largely exceeds the
number of instances, and convolution layers are used because neighboring
features have a bigger chance to explain each other in SNP data. The main
limitation of the SCDA method is that it requires training data of complete
cases, which is usually very limited in SNP data. For this reason, we don’t
include the SCDA method in an experimental setting where all or almost
all cases are affected by missingness.

To overcome the lack of complete data in the entire dataset, we propose
treating SNP data by splitting it into windows of consequent features and
incorporating information from already imputed previous windows. We
treat each window as data that can be given to an Autoencoder, however,
noticing that we do not explicitly need a hidden-layer representation, we
use multi-label Autoreplicative Random Forests instead of neural network
architecture, as we propose earlier in Chapter 5.

In this work, we study imputation for SNP data as it exhibits all the aspects
we are interested in tackling: high-dimensional data (such that p ≫ N),
the possibility of a significant proportion of missing values, and no refer-
ence panel but at least some local correlations in the feature space. How-
ever, it is important to note that the same approach can be adapted to
any data exhibiting these characteristics. For high-dimensional and low-
sampled datasets, the ChARF method was shown to be very competitive
in terms of both imputation quality and time complexity. At the same
time, even for low-dimensional data, we can adapt this approach with per-
sonalized splitting for blocks depending on missing patterns.

The rest of the chapter is organized as follows. We present our method in
Section 6.2. The results and their discussion as well as complexity analysis
are in Section 6.3. In Section 6.4, we draw conclusions and describe future
work.
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6.2 Method

Our method consists of two main novelties. First, we use multi-label clas-
sifiers (e.g. Autoreplicative Random Forests) for imputation as described
in Chapter 5. We use multi-label predictive models that are not based on
neural networks, as we want to efficiently process relatively low-sampled
(compared to a number of features) datasets, where complex neural net-
works are prone to overfitting and get stuck in optimizing parameters. Fur-
thermore, as discovering the inner structure of the data itself is out of the
scope of this task, we do not explicitly need hidden layers of the neural
network. In this chapter, we adapt procedural Autoreplicative Random
Forests (pARF), though adaptation of the iterative version of the method
(itARF) may be also applied and will be implemented in the future.

Second, Chains of subsequent windows of Autoreplicative models allow
adapting the idea of Autoencoders to real-world high-dimensional scenarios
when there is no complete data available for training, as explained in the
following subsection. We call the resulting method Chains of Autoreplica-
tive Random Forests (ChARF).

6.2.1 Ensemble of Chains of Autoencoders

As we use Autoreplicative models where input and output represent the
same dataset, both of them are high-dimensional, and thus training process
has rather high memory consumption. At the same time, in SNP datasets
local neighbors have a much higher chance to be inherited from the same
distant ancestor and thus to be informative for imputing missing values
within the neighborhood. This effect is called linkage dysequilibrium [Das
et al., 2018].

In this work, we use procedural ARFs as they have only one cycle of im-
putation, and thus modeling takes less time and computational resources.
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However, they require complete data for training which may be difficult or
impossible to obtain in data with abundant missing values. This is espe-
cially the case for high-dimensional data: with a large number of features, it
is likely not feasible to select a reasonable number of rows without missing
values, even for a small ratio of missingness. This is the second reason to
process SNP datasets by small-sized windows where it is possible to select
a training subset of reasonable size with full information. We fit the model
on the selected subset and then predict values to impute missing ones in
the remaining subset.

Note that this window approach may serve for other types of ordered data,
such as e.g. gene expression arrays, time series, images, and sound frag-
ments.

Fig. 6.1 shows the average size of available training data in simulation with
uniformly distributed missing values. As can be seen, it decreases dramat-
ically with the growth of window size. To increase the method’s power to
catch and use dependencies between the features, we suggest chains of im-
putation models, similar to the Classifier Chains methodology [Read et al.,
2011], i.e. stacking of already processed features as new features for the con-
sequent estimators (see Fig. 6.2). To keep the complexity of the algorithm
feasible and reduce computation time, we do not incorporate all previous
windows but select only the ν last ones.

Again, as consequent features have a higher chance to be shared between
some individuals, it makes sense to include neighboring windows in chains.
To this end, we select one forward and one backward chain, as well as several
(up to 3) random chains, to incorporate possible long-term interactions.
Selection of previously imputed windows can be generalized as, for example,
sampling from a normal distribution with a mean equal to the current
window number (Fig. 6.3a) or other kinds of distributions for different
kinds of data. In the ensemble of chains, we average predictions (i.e. take
a major vote) for each missing value.
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Figure 6.1: Average complete training size (i.e. rows without missing
values) according to window size ∆. Missing values are simulated for the
MCAR scenario with a uniform distribution. Dashed black lines show

examples of possible window sizes for τ = 0.4.

Table 6.1: Example window sizes ∆ according to desired training sam-
ples, via Eq. 6.1

% of missing data
Size of training data 1% 5% 10% 20% 30%
20% of original data 160 31 15 7 4
30% of original data 120 23 11 5 3
50% of original data 69 14 7 3 2



Missing value imputation in genomics data 125

Figure 6.2: Model processes windows in a chain, incorporating windows
with already imputed values as additional features. At one step, we split
the window of size ∆ into the training part with complete data and the
testing part with missing values. After fitting on training data corrupted

with missing values, we impute missing values in the testing part.
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(a) Probabilities to take already
predicted windows into chain
at position 50; 100 windows;
10 previous windows for each
chain; 3 chains: forward, back-

ward, and random.

(b) Two strategies to include
distant windows into analysis

(c) Window size ∆ = 10, strat-
egy A

(d) Window size ∆ = 5, strat-
egy A

(e) Window size ∆ = 10, strat-
egy B

(f) Window size ∆ = 5, strat-
egy B

Figure 6.3: Including the 2ν closest neighbor windows as additional
features (strategy A) significantly increases the accuracy while including
only 2 windows on distance ν (strategy B) has occasional and unstable

improvement.
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Our method is summarised as pseudocode in Algorithm 6. We compare the
performance of the models with hyperparameters ∆ and ν in Section 6.3.
We estimate theoretically the maximum size ∆ of one window according to
the desired size of training data τ . As τ ∼ (1− f)∆, then

∆(τ) ∼ log1−f τ = ln τ

ln(1− f) , τ ∈ (0, 1), (6.1)

where f is a fraction of missing values and τ is a desirable threshold for
a ratio of complete rows in the training subset. The empirical results of
the simulation (Fig. 6.1) correspond to this estimation. We see that with
the growth of window size, the size of training data decreases dramatically.
As a consequence, the window size should be selected carefully by taking
the missing value ratio into account. We suggest possible window sizes
according to the desired size of training data in Table 6.1.

Algorithm 6
1: procedure ChARF(XN×p, window size ∆, # of previous steps ν,

# of chains K)
2: Split features into ∆-wide windows ▷ Last window has

size p (mod ∆)
3: Generate K permutations of (1, 2, ..., n = ⌈ p

∆⌉)}
4: for each permutation {σ(1), ..., σ(n)} do
5: for each window Xσ(i) do
6: Xext ← Xσ(i)

⊕
Xσ(i−1)

⊕
...

⊕
Xσ(i−ν) ▷ Stack last ν pro-

cessed windows as
additional features

7: Xtrain ← Xcomplete
ext ▷ Select complete

cases for training
8: X̃train ← Xtrain corrupted with m.v. ▷ Uniformly dis-

tributed, % of m.v.
as in Xσ(i)

9: Xtest ← Xmissing
ext

10: Fit model on (X̃train, Xtrain)
11: Xpred ← predictions of fitted model on Xtest

12: replace m.v. in Xtest with corresponding values from Xpred

13: Take major vote for all K predictions per missing value
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6.3 Results and discussion

We test Chains of Autoreplicative Random Forests (of 10 trees each) on
several high-dimensional SNP datasets (p ≫ N), briefly summarized in
Table 6.2. We simulate the missing values by masking true values in the
data under a uniform distribution, with the proportion of missing values
1%, 5%, 10%, 20%, and 30%.

To support the hypothesis that neighboring features have a higher chance
of explaining each other, in Fig. 6.3b-6.3f we include experiments for using
all neighboring (strategy A) or only two distant (strategy B) windows on
distance ν on one of the SNP datasets. We can see that including very
close neighbors significantly increases the quality of imputation, while with
including distant neighbors the improvement may present (this fact corre-
sponds to possible long-term correlations), but is very unstable and cannot
be guaranteed.

We evaluate the performance of our method by imputation marginal accu-
racy, i.e. the percentage of correctly imputed values out of missing ones.
The masking procedure is performed 5 times to produce independent in-
complete datasets containing missing values. Values are imputed for each
of the datasets, and average accuracy is shown.

The empirical study has shown a significant improvement when both the
features and the targets are one-hot encoded (paired t-test statistics 3.442,
df=29, p-value=0.0018, see Fig. 6.4). While performing one-hot encoding
is not common for Random Forests training and typically does not lead to
a big improvement, we guess that it can be beneficial when a multi-label
multi-class Random Forest is used, i.e. encoding in the target space may
be essential.

For ChARF, we first evaluate hyperparameters: window size
∆ ∈ [3, 5, 8, 10, 15], and number of previous windows in the chain to take
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Table 6.2: SNP datasets used in experiments, p features, N samples.

Name p N Reference
Maize 44,729 247 [Negro et al., 2019]
Eucalyptus 33,398 970 [de Lima et al., 2019]
Colorado Beetle 34,186 188 [Crossley et al., 2017]
Arabica Coffee 4,666 596 [Fanlli Carvalho, 2021]
Wheat (Zuchtwert study) 9,763 388 [Reif, 2020]
Coffea Canephora 45,748 119 [Ferrão et al., 2018]

Figure 6.4: One-Hot encoding may significantly improve the imputation
power of ChARF method in SNP datasets.
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as new features ν ∈ [0, 1, 3, 5, 10]. To reduce the computation time, we
first search for the best values of ∆ and ν on reduced datasets (first 1000
features) and then use these values for computation on the entire datasets.
The grid-search results are presented in Fig. 6.5. As expected (from esti-
mation in Subsection 6.2.1, Fig. 6.1 and Table 6.1), from Fig. 6.5 we see
that the most effective window size decreases with the growth of a number
of missing values (since a bigger part of instances gets corrupted).

For the MICE method, with the default settings, each estimator considers
all other variables, which makes the total complexity at least quadratic
and thus requires huge computational and time resources in the case of
high-dimensional data (in our experiments, the machine ran out of mem-
ory). The original R package suggests a pre-processing quickpred function,
which selects the predictive features based on pairwise correlation, but in
this case, quadratic complexity is required in this step. With the intuition
that the neighboring features in SNP data have the highest chance to ex-
plain each other, for the experiments we select windows of 10 neighbors
for each feature. Such an approach is computationally feasible, but the
imputation still leaves some missing values in the data (around 10-20%).
The possible explanation is the collinearity between features [van Buuren
and Groothuis-Oudshoorn, 2011]. This approach worked for smaller SNP
datasets (Arabica Coffee and Wheat), but for the other ones, the compu-
tations still failed.

In most cases, the experiments show better or competitive performance
with regard to benchmark methods (Table 6.3). At the same time, we see
that with the rise of the missing value ratio, the accuracy of imputation
diminishes. This is explained by the very small size of training data even on
small windows for a big number of missing values. However, for a moderate
missing value ratio, our method consistently outperforms its alternatives.
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Figure 6.5: Accuracy of imputation for SNP datasets for different ra-
tios of missing values (indicated in column headers). Better accuracy

lighter/higher value (shown in cells).
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Table 6.3: Accuracy. Optimal hyperparameters ∆ and ν are esti-
mated via internal validation. For kNN we selected the best of k ∈
{3, 5, 10, 20, 50} (shown in brackets) in a similar way. Likewise for rank
∈ {10, 20, 50, 100, 200, 300, 500} for the SVD method. The missForest
method was run for the first 100 features only as it is not possible to
run it for a whole dataset. The best accuracy per column is in bold. The

second best accuracy is underlined. All results rounded to 3 dp.

MVR 0.01 0.05 0.1 0.2 0.3 0.01 0.05 0.1 0.2 0.3

Maize Eucalyptus
∆ = 15 ∆ = 15 ∆ = 10 ∆ = 5 ∆ = 5 ∆ = 10 ∆ = 5 ∆ = 5 ∆ = 3 ∆ = 3
ν = 1 ν = 1 ν = 1 ν = 1 ν = 1 ν = 5 ν = 10 ν = 10 ν = 10 ν = 10

ChARF 0.952 0.935 0.916 0.882 0.845 0.970 0.950 0.926 0.866 0.810
kNN (5/10) 0.803 0.802 0.801 0.798 0.794 0.851 0.849 0.847 0.843 0.839
mode 0.727 0.727 0.726 0.727 0.726 0.725 0.732 0.731 0.730 0.729
SVD (50/500) 0.647 0.648 0.645 0.643 0.636 0.788 0.788 0.788 0.785 0.780
MICE – – – – – – – – – –
missForest 0.662 0.650 0.622 0.593 0.580 0.684 0.673 0.626 0.564 0.521

Colorado Beetle Arabica Coffee
∆ = 10 ∆ = 10 ∆ = 5 ∆ = 5 ∆ = 3 ∆ = 15 ∆ = 10 ∆ = 5 ∆ = 3 ∆ = 3
ν = 1 ν = 1 ν = 1 ν = 1 ν = 1 ν = 3 ν = 3 ν = 5 ν = 10 ν = 3

ChARF 0.835 0.824 0.818 0.805 0.792 0.897 0.886 0.878 0.866 0.854
kNN (50/10) 0.765 0.763 0.765 0.765 0.764 0.867 0.866 0.866 0.865 0.864
mode 0.761 0.760 0.762 0.761 0.761 0.807 0.804 0.805 0.805 0.804
SVD (50/100) 0.740 0.737 0.737 0.735 0.734 0.693 0.694 0.696 0.692 0.690
MICE – – – – – 0.757 0.741 0.724 0.689 0.664
missForest 0.352 0.349 0.361 0.326 0.335 0.497 0.480 0.533 0.541 0.586

Wheat Coffea Canephora
∆ = 8 ∆ = 5 ∆ = 5 ∆ = 3 ∆ = 3 ∆ = 10 ∆ = 10 ∆ = 5 ∆ = 5 ∆ = 3
ν = 10 ν = 10 ν = 10 ν = 10 ν = 10 ν = 1 ν = 1 ν = 1 ν = 1 ν = 1

ChARF 0.821 0.808 0.795 0.777 0.762 0.799 0.781 0.761 0.731 0.717
kNN (10/10) 0.823 0.819 0.818 0.815 0.811 0.737 0.739 0.737 0.734 0.731
mode 0.729 0.727 0.729 0.729 0.727 0.691 0.693 0.692 0.692 0.691
SVD (200/50) 0.622 0.618 0.609 0.600 0.594 0.456 0.453 0.450 0.449 0.450
MICE 0.641 0.635 0.621 0.585 0.545 – – – – –
missForest 0.614 0.736 0.746 0.756 0.755 0.377 0.449 0.442 0.395 0.383
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6.4 Conclusions and future work

Continuing the idea of Chapter 5, we support the idea of using Autoreplica-
tive Random Forests for missing value imputation and adapt it as Chains
of Autoreplicative Random Forests for high-dimensional and low-sampled
datasets, e.g. Single Nucleotide Polymorphisms data. This newly proposed
method splits data into windows of consequent features and imputes miss-
ing values window by window while incorporating information from already
processed features.

The empirical study performed on several SNP datasets under different
missing value ratios demonstrates a very competitive predictive power. Our
method requires neither reference panels nor complete feature-wide data
for training and thus can be used in a variety of real-world scenarios when
the imputation of missing data is required. Our approach consists of two
main novelties: it is model agnostic (we used using Random Forests in
experiments) in regards to the Autoreplicator; essentially an Autoencoder
with no explicit encoding; and operates on windows of data. Our approach
proved competitive and is promising for further investigation.

In future work, we are going to improve algorithm performance on datasets
with a large number of missing values and make it more stable with regard
to high missing value ratios. As preliminary experiments show that this
approach works for the MAR scenario as well, we will further analyze the
performance of the ChARF method for other patterns of missingness.

We plan to test the imputation performance with the iterative version of
the ARF method applied in the same chaining manner as it potentially may
increase effective window size and hence improve the imputation quality.
It is also essential to adapt distributional iterative ARFs as the distribu-
tional imputation may provide information about the model’s confidence
of imputation per instance and per feature which may be useful for further
analysis of dependencies between genome and phenotype, e.g. GWAS.





Chapter 7

Conclusion

This thesis addresses multi-output modeling, where each instance may be
associated with multiple outputs, traditionally called labels in the classifi-
cation case and targets in the regression case. In recent years, multi-output
tasks have arisen more and more frequently and are associated with a wide
range of different domains.

In this chapter, we summarize the contributions of the conducted research
and discuss future work on the subject.

7.1 Contributions

Research in this thesis considers both classification and regression multi-
output settings and, more precisely, is focused on the following:

• We improved the existing solution in the multi-target regression do-
main, Ensembles of Regressor Chains, particularly for the cases of the

135
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multi-modal target distribution, where previous solutions may pro-
duce inadequate results not corresponding to the data distribution,
especially when the features are not highly informative (in Chapter 3);

• We considered a non-standard multi-output task where some target
values are provided in the inference phase and are to be incorporated
into the joint modeling of the other targets without re-training of the
model, and we proposed a well-performing probabilistic solution based
on Regressor Chains for this setting (in Chapter 4);

• We proposed a novel method for missing value imputation that treats
the problem as a multi-output task; using multi-output Random
Forests as Autoreplicative imputing models allowed us to reach sta-
tistically significant improvement while keeping computational time
relatively slow (in Chapter 5);

• We extended the proposed missing value imputation method to Single
Nucleotide Polymorphisms datasets which are typically
high-dimensional and low-sampled, and obtained the results outper-
forming the benchmarks in most of the cases (in Chapter 6).

Below we elaborate on the achieved results and discuss them in more detail.

Multi-modal Ensembles of Regressor Chains

In Chapter 3, we discussed the possible reasons for Regressor Chains’ un-
derperformance in multi-target regression tasks. As one of the possible
reasons for their insufficient power, we suggested an inappropriate choice
of the loss function. Oppositely to, e.g., the well-known classification 0/1
Loss function, which estimates the percentage of instances where all labels
have been predicted correctly, most regression methods aim at optimiz-
ing MSE or MAE loss functions, which are decomposable in multi-output
settings and thus practically do not perform joint modeling of the targets.
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This may be inadequate, for example, if targets have multi-modal distribu-
tion, and MSE-optimizing algorithms model Gaussian distribution, putting
the predictions between the clusters, in the place when ground-truth targets
are rarely observed. As a solution for this issue, we proposed optimizing
UCF (a regression analog of 0/1 Loss), mode-seeking loss function, instead
of MSE or MAE, mean-seeking loss function.

To this end, we developed a method based on Ensembles of Regressor
Chains. As they are model-agnostic with regard to the base estimator,
and we wanted to maintain this flexibility, we forced the ERC model to
optimize UCF loss on the upper level, instead of forcing each possible base
estimator.

The results showed that the proposed method successfully learns the target
distribution and obtains outperforming results when compared to the state-
of-the-art methods.

In addition to proposing this new method, we would like to underline that
the choice of UCF metric both for optimization and for measuring perfor-
mance is still underlooked but deserves further attention and investigation.

Metropolis-Hastings sampled Regressor Chains

In Chapter 4, we introduced a non-standard multi-output challenge with
additional constraints coming in the inference phase. We were interested
in querying the target predictions when some target values are provided
before the prediction and have to be incorporated into the joint modeling
of the other targets while re-training of the model is not available. This
may be the case in, for example, federated learning, transfer learning, or
simply when the training data is not available anymore due to ethical or
computational reasons.
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As Regressor Chains and Ensembles of Regressor Chains are in fact pop-
ular choices in multi-target modeling, we proposed Regressor Chain-based
methods, Metropolis-Hasting sampled [Ensembles of] Regressor Chains for
prediction that include the mentioned constraints in joint modeling of the
targets regardless of the order of the chain and in particularly of the posi-
tions of the observed values in the chain.

We evaluated the newly proposed methods in several use cases and obtained
very promising results. Again, as in Chapter 3, we aimed at maintaining
the flexibility of the method with regard to base estimator choice which
allows us to apply the method in different domains.

Autoreplicative Random Forests

In Chapter 5, we analyzed the literature on missing value imputation ap-
proaches and described a general framework where all methods can be
selected via hyperparameter tuning. As an important distinction between
methods, we separated procedural and iterative groups.

Procedural methods perform imputation once, training models on all or a
subset of observed values. Iterative methods train on all data including
pre-imputed missing data and update imputed missing values in multiple
cycles until convergence between iterations is reached. We also discussed
that while some methods exist in literature only in one of the versions,
procedural or iterative, typically they can be easily adapted to both ap-
proaches.

As a novel method within the framework, we proposed multi-output multi-
label Autoreplicative Random Forests (ARF) for missing value imputation
in three different variants. Procedural ARF and iterative ARF follow the
same ideas, performing imputation only once or iteratively, respectively.
Additionally, we proposed distributional iterative ARF which, first, takes
into account the model’s confidence of imputation for each instance and,
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second, estimates the posterior distribution as a measure of imputation
uncertainty.

We showed that Autoreplicative Random Forests in three proposed ver-
sions obtain competitive results when compared to state-of-the-art methods
while also having significantly lower computation complexity if compared
to the main competitor, the MICE method. This makes Autoreplicative
Random Forests a very nice imputation alternative with high performance
and reasonable computation time.

We also would like to highlight the importance of joint modeling, which is
not by default done by multi-label Random Forests as such models max-
imize probability per-label and as a consequence may provide label com-
binations that are not typically observed in the data. While making the
first step in this direction within the ditARF method, we are interested in
further research in the future.

Another important observation was that imputation performance and fur-
ther classification/regression performance are separate goals and the first
does not necessarily imply the second. We concluded that this raises a
necessity for designing algorithms that both model the targets and impute
the missing values in the features jointly.

Chains of Autoreplicative Random Forests

In Chapter 6, we continued studying previously proposed in Chapter 5 Au-
toreplicative Random Forests and proposed their adaption for very high-
dimensional and low-sampled categorical datasets, in particular Single Nu-
cleotide Polymorphisms (SNP) data. Our approach splits the data into the
windows of consequent features and imputes missing values in the windows
separately. To increase the method’s imputing power, we included already
processed windows to the modeling on the non-processed missing values, in
a chained fashion, similar to the Classifier and Regressor Chains discussed
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above. Performing several chains with different window orders optimizes
the result.

The empirical study performed on several SNP datasets demonstrated out-
standing results. We concluded that Autoreplicative Random Forests are a
promising and flexible novel method that may be adapted and applied to
different settings and scenarios.

7.2 Future work

In this thesis, we several times bring up the subject of joint modeling of mul-
tiple outputs. While, for example, multi-output Random Forests remain
one of the state-of-the-art methods in both classification and regression do-
mains, the loss functions optimize the outputs separately in both settings.
As a consequence, the predictions may appear to be impossible or very rare
combinations of the outputs and thus not correspond to the actual output
distribution.

Intrigued by this problem, we plan to further investigate joint loss function
optimization in general, and in particular for multi-output Decision Trees
and Random Forests. As we have seen, the importance of such research
is observed in both classification and regression as well as both target and
feature modeling.

In this thesis, we discuss regression and classification problems mostly sep-
arately. First, we identify problems and develop possible solutions in the
regression domain, for multi-modal distributions of multiple targets and for
joint inference with provided fixed target values. Second, we develop a new
multi-label imputation method in the classification domain.

From the first glance, all developed methods may be transferred to the
opposite domain, from regression and classification and vice versa. How-
ever, initial research uncovers that the straightforward adaptations of our
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methods do not perform as well as one may expect. While this is not very
surprising and such limitations are often discussed in the literature, we are
very interested in further research on the aforementioned limitations, the
specific reasons behind them, and possible solutions.

Also, in general, we consider it important to not only provide the mean pre-
dicted optimal value of targets, but also provide a measure of uncertainty.
In our view, this is particularly important in missing value imputation,
where the imputed values typically are not distinguishable from the ob-
served ones in further modeling, and this may bias the analysis outcomes.
We plan to further investigate better ways to measure and output models’
confidence as well as the ways to take it into account in classification and
regression modeling.
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Dembczyński, K., Waegeman, W., Hüllermeier, E., 2012. An analysis of
chaining in multi-label classification, in: ECAI: European Conference
of Artificial Intelligence, IOS Press. pp. 294–299. URL: http://hdl.
handle.net/1854/LU-3132158.

Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical



References 146

Society: Series B (Methodological) 39, 1–22. doi:10.1111/j.2517-6161.
1977.tb01600.x.

D’hondt, R., Moylett, S., Goris, A., Vens, C., 2023. A binning ap-
proach for predicting long-term prognosis in multiple sclerosis, in: Arti-
ficial Intelligence in Medicine. Springer Nature Switzerland, pp. 25–34.
doi:10.1007/978-3-031-34344-5_3.

Dougherty, J., Kohavi, R., Sahami, M., 1995. Supervised and unsupervised
discretization of continuous features, in: Machine Learning Proceed-
ings 1995. Elsevier, pp. 194–202. doi:10.1016/b978-1-55860-377-6.
50032-3.

Dray, S., Josse, J., 2014. Principal component analysis with missing values:
a comparative survey of methods. Plant Ecology 216, 657–667. doi:10.
1007/s11258-014-0406-z.

Dua, D., Graff, C., 2017. UCI machine learning repository. URL: http:
//archive.ics.uci.edu/ml.

Elisseeff, A., Weston, J., 2001. A kernel method for multi-labelled
classification. Advances in neural information processing systems
14. URL: https://proceedings.neurips.cc/paper_files/paper/
2001/hash/39dcaf7a053dc372fbc391d4e6b5d693-Abstract.html.

Fanlli Carvalho, H., 2021. Arabica coffee - IAC/EMBRAPA - BRAZIL.

Feng, Y., Fan, J., Suykens, J.A., 2020. A statistical learning approach to
modal regression. Journal of Machine Learning Research 21, 1–35. URL:
https://www.jmlr.org/papers/volume21/17-068/17-068.pdf.

Feng, Y., Huang, X., Shi, L., Yang, Y., Suykens, J., 2015. Learning with
the maximum correntropy criterion induced losses for regression. Journal
of Machine Learning Research 16, 993 – 1034. URL: https://www.jmlr.
org/papers/volume16/feng15a/feng15a.pdf.



References 147

Ferrão, L.F.V., Ferrão, R.G., Ferrão, M.A.G., Fonseca, A., Carbonetto,
P., Stephens, M., Garcia, A.A.F., 2018. Accurate genomic prediction of
coffea canephora in multiple environments using whole-genome statistical
models. Heredity 122, 261–275. doi:10.1038/s41437-018-0105-y.

Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution
climate surfaces for global land areas. International Journal of Climatol-
ogy 37, 4302–4315. doi:10.1002/joc.5086.

Friedl, M., Gray, J., Sulla-Menashe, D., 2019. Mcd12q2 modis/terra+aqua
land cover dynamics yearly l3 global 500m sin grid v006. doi:10.5067/
MODIS/MCD12Q2.006.

Gerych, W., Hartvigsen, T., Buquicchio, L., Agu, E., Runden-
steiner, E.A., 2021. Recurrent bayesian classifier chains for ex-
act multi-label classification, in: Advances in Neural Informa-
tion Processing Systems, Curran Associates, Inc.. pp. 15981–15992.
URL: https://proceedings.neurips.cc/paper_files/paper/2021/
file/859bf1416b8b8761c5d588dee78dc65f-Paper.pdf.

Godbole, S., Sarawagi, S., 2004. Discriminative methods for multi-
labeled classification, in: Advances in Knowledge Discovery and
Data Mining. Springer Berlin Heidelberg, pp. 22–30. doi:10.1007/
978-3-540-24775-3_5.

Guo, Y., Gu, S., 2011. Multi-label classification using conditional depen-
dency networks, in: IJCAI Proceedings-international joint conference on
artificial intelligence, p. 1300. URL: http://people.scs.carleton.ca/

˜yuhongguo/research/papers/ijcai11guo.pdf.

Hastings, W.K., 1970. Monte Carlo sampling methods using Markov chains
and their applications. Biometrika 57, 97–109. doi:10.1093/biomet/57.
1.97.



References 148

Hemsing, L.Ø., Bryn, A., 2012. Three methods for modelling potential
natural vegetation (PNV) compared: A methodological case study from
south-central norway. Norsk Geografisk Tidsskrift - Norwegian Journal
of Geography 66, 11–29. doi:10.1080/00291951.2011.644321.

Hendry, A.P., Huber, S.K., León, L.F.D., Herrel, A., Podos, J., 2008.
Disruptive selection in a bimodal population of darwin's finches. Pro-
ceedings of the Royal Society B: Biological Sciences 276, 753–759.
doi:10.1098/rspb.2008.1321.

Hengl, T., Walsh, M.G., Sanderman, J., Wheeler, I., Harrison, S.P., Pren-
tice, I.C., 2018. Global mapping of potential natural vegetation: an
assessment of machine learning algorithms for estimating land potential.
PeerJ 6, e5457. doi:10.7717/peerj.5457.

Ho, T.K., 1995. Random decision forests, in: Proceedings of 3rd Interna-
tional Conference on Document Analysis and Recognition, pp. 278–282.
doi:10.1109/ICDAR.1995.598994.
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Titre : Apprentissage et prédiction multi-cibles : Nouvelles méthodes et applications

Mots clés : Prédiction multi-sorties, Régression multi-cibles, Classification multi-label, Inférence probabiliste,
Imputation des valeurs manquantes

Résumé : Une tâche prédictive à sorties multiples im-
plique la modélisation de plusieurs sorties numériques
ou catégorielles pour chaque instance. Bien qu’une ap-
proche simple consiste à modéliser les sorties séparément,
l’utilisation de techniques de modélisation conjointe
améliore souvent la prédiction grâce à l’analyse des in-
terdépendances entre les cibles. Dans le contexte de
la régression, la modélisation conjointe pose plusieurs
problèmes. Tout d’abord, de nombreuses méthodes sup-
posent généralement une distribution gaussienne mono-
modale des cibles, alors que cette hypothèse n’est pas
nécessairement valable. Pour résoudre ce problème, nous
proposons une nouvelle solution basée sur les chaı̂nes
de régresseurs, qui sont des chaı̂nes de modèles à
sortie unique incorporant des cibles déjà prédites à la
modélisation des cibles suivantes. Deuxièmement, nous
étudions la régression multicible dans les scénarios où
certaines des valeurs cibles sont fournies dans la phase
de prédiction et devraient être incluses dans la prédiction
des autres cibles, sans former un nouveau modèle si, par
exemple, les données d’entraı̂nement ne sont plus dispo-
nibles. À cette fin, nous développons une approche pro-
babiliste pour l’inférence rétrospective dans les chaı̂nes

de régresseurs qui incorpore les valeurs fournies dans
la modélisation conjointe des autres cibles, quel que soit
l’ordre de la chaı̂ne. Dans le domaine de la classifica-
tion, nous proposons une nouvelle application des forêts
aléatoires à sorties multiples de manière autoréplicative
pour réaliser l’imputation des valeurs manquantes ou, en
d’autres termes, pour débruiter les données. Les forêts
aléatoires autoréplicatives proposées démontrent leurs per-
formances élevées dans une étude empirique. En outre,
nous développons un cadre général qui unifie les différentes
méthodes d’imputation et permet la sélection de la méthode
par le réglage des hyperparamètres. Nous établissons une
distinction importante entre les méthodes procédurales et
itératives et décrivons la nouvelle méthode dans les deux
variantes. En outre, nous étendons cette méthode à un
modèle distributionnel qui intègre la confiance dans l’im-
putation et produit une distribution pour chaque valeur
imputée. Enfin, nous étendons l’applicabilité des forêts
aléatoires autoréplicatives aux données génomiques à
haute dimension en imputant les valeurs manquantes dans
des fenêtres distinctes et en incluant les fenêtres traitées
dans la modélisation des fenêtres suivantes d’une chaı̂ne.

Title : Multi-target Learning and Prediction: Novel Methods and Applications

Keywords : Multi-output prediction, Multi-target regression, Multi-label classification, Probabilistic inference,
Missing value imputation

Abstract : A multi-output predictive task involves mode-
ling multiple numerical or categorical outputs for each ins-
tance. While a straightforward approach is to model out-
puts separately, employing joint modeling techniques of-
ten improves prediction due to the target interdependencies
analysis. In the context of regression, several challenges
emerge in joint modeling. First, many methods typically as-
sume a single-modal Gaussian target distribution, while this
assumption is not necessarily valid. To tackle this issue,
we propose a novel solution based on Regressor Chains,
which are chains of single-output models incorporating al-
ready predicted targets to the modeling of the subsequent
ones. Second, we study multi-target regression in the sce-
narios when some of the target values are provided in the
prediction phase and should be included in the prediction
of the other targets, without training a new model if, e.g.
the training data is not available anymore. To this end, we
develop a probabilistic approach for backward inference in
Regressor Chains which incorporates the provided values

in the joint modeling of the other targets, regardless of the
chain order. In the classification domain, we propose a no-
vel application of multi-output Random Forests in an auto-
replicative fashion to perform missing value imputation or,
in other words, denoise the data. The proposed Autorepli-
cative Random Forests demonstrate their high performance
in empirical study. Moreover, we develop a general frame-
work that unifies different imputation methods and allows
method selection by hyperparameter tuning. We make an
important distinction by distinguishing the procedural and
iterative methods and describe the new method in both va-
riants. Additionally, we extend this method with a distribu-
tional model that integrates the imputation confidence and
outputs a distribution for each imputed value. Finally, we ex-
tend the applicability of Autoreplicative Random Forests to
high-dimensional genomic data by imputing missing values
in separate windows and including the processed windows
in the modeling of the subsequent ones in a chain.
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