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Abstract

A multi-output machine learning predictive task is characterized by the
need to predict multiple numerical or categorical outputs for each instance.
While a straightforward approach involves modeling each output separately,
employing joint modeling techniques often enhances prediction performance
and yields superior results due to analyzing and exploiting the interdepen-

dencies between the various target variables.

In the context of regression, when addressing joint modeling, several chal-
lenges emerge. One common issue is that many methods tend to assume a
single-modal Gaussian distribution, while the ground-truth target distribu-
tion does not necessarily correspond to this assumption. To tackle this is-
sue, we propose a novel solution based on Regressor Chains, which are basi-
cally chains of single-output models incorporating already predicted targets
to the modeling of the subsequent ones. The proposed approach, Multi-
Modal Ensemble of Regressor Chains, offers a mechanism to effectively
handle multi-modal target distributions, enhancing the model’s predictive
capabilities while maintaining flexibility with regard to base estimators of

Regressor Chains.

Second, we study multi-target regression in the scenarios when some of
the target values are known in the prediction phase and can be leveraged
to predict the unknown ones without re-training the model. This may be

the case if, for example, the training data is restricted or not available
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anymore. To this end, we develop an approach for backward inference in
Regressor Chains which incorporates the information about the fixed values
and includes them into the joint modeling of the other values regardless of
the chain order and positioning of the known targets in it. Additionally,
the proposed solution provides the distribution for each instance instead of

a mean value.

In the classification domain, we introduce a novel application of multi-
output Random Forests. We propose using them in an Autoreplicative
fashion to perform missing value imputation or, in other words, denoise
the data. The proposed method is evaluated across a range of various
datasets, demonstrating its efficacy. Moreover, we develop a general frame-
work that unifies different imputation methods and makes it possible to
select a method by tuning hyperparameters. We make an important dis-
tinction by telling apart the procedural and iterative methods. The pro-
cedural methods are optimized on the observed values and impute missing
ones only once. Oppositely, the iterative methods update imputed values
iteratively in cycles until convergence criteria are reached. We add the
newly proposed method, Autoreplicative Random Forests to the general
framework both in procedural and iterative versions. Additionally, we ex-
tend it with distributional iterative Autoreplicative Random Forests that
incorporate the model’s confidence of imputation on each iteration to the
modeling in subsequent cycles and output a distribution for each imputed

value in the end.

Finally, we extend the applicability of Autoreplicative Random Forests to
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genomic high-dimensional data, namely Single Nucleotide Polymorphisms
datasets, by imputing missing values in separate windows and incorpo-
rating the processed windows into the modeling of the subsequent ones
in a chained fashion. Through a comprehensive experimental analysis, our
approach showcases competitive and even outperforming results when com-

pared to other reference-free methods.



Résumé en Francais

Une tache prédictive de 'apprentissage automatique a sorties multiples
se caractérise par le besoin de prédire plusieurs sorties numériques ou
catégorielles pour chaque instance. Alors qu'une approche directe con-
siste a modéliser chaque sortie séparément, 'utilisation de techniques de
modélisation conjointe améliore souvent les performances de prédiction et
produit des résultats supérieurs en raison de ’analyse et de ’exploitation

des interdépendances entre les différentes variables cibles.

Dans le contexte de la régression, lorsqu’il s’agit de la modélisation con-
jointe, plusieurs défis émergent. Premierement, un probléme courant est
que de nombreuses méthodes ont tendance a supposer une distribution
gaussienne unimodale, alors que la distribution cible réelle ne correspond
pas nécessairement a cette hypothese. Pour résoudre ce probléme, nous
proposons une nouvelle solution basée sur les chaines de régresseurs, qui
sont essentiellement des chaines de modeles a une seule sortie incorporant
les cibles déja prédites comme variables d’entrée dans la modélisation des

cibles suivantes.

Nous proposons ’ensemble multi-modal de chaines de régresseurs offrant un
mécanisme pour gérer efficacement les distributions cibles multimodales et
qui améliorent les capacités de la prédiction du modele, tout en maintenant

la flexibilité des estimateurs de base composant les chaines de régresseurs.



Deuxiemement, nous étudions la régression multi-cibles dans les scénarios
ou certaines des valeurs cibles sont connues dans la phase de prédiction et
qui sont exploitées pour prédire les valeurs inconnues sans ré-entrainer le
modele. Cela est interessant si, par exemple, les données d’entrainement

sont restreintes ou ne sont plus disponibles.

A cette fin, nous développons une approche pour l'inférence régressive
integrant les informations sur les valeurs connues dans la modélisation con-
jointe des autres inconnues, indépendamment de 'ordre des chaines et de
la position des cibles connues dans celle-ci. De plus, la solution proposée

fournit la distribution pour chaque instance au lieu d’une valeur moyenne.

Dans le domaine de la classification, nous introduisons une nouvelle applica-
tion des foréts aléatoires a sorties multiples. Nous proposons de les utiliser
de maniere autoréplicative pour effectuer 'imputation des valeurs man-
quantes ou, en d’autres termes, pour débruiter les données. La méthode
proposée est évaluée sur un ensemble de jeux de données différents pour
démontrer son efficacité dans des applications du monde réel. De plus, nous
développons un cadre général qui unifie les différentes méthodes d’imputation
et permet de sélectionner une méthode en ajustant les hyperparametres.
Nous faisons une distinction importante en différenciant les méthodes
procédurales et itératives. Les méthodes procédurales sont optimisées sur
les valeurs observées et imputent les valeurs manquantes une seule fois. En
revanche, les méthodes itératives mettent a jour les valeurs imputées de

maniere itérative jusqu’a ce que les criteres de convergence soient atteints.
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Nous ajoutons la méthode nouvellement proposée, les foréts aléatoires au-
toréplicatives, au cadre général dans les versions procédurales et itératives.
De plus, nous I’étendons avec des foréts aléatoires autoréplicatives itératives
distributionnelles qui integrent la confiance du modele envers I'imputation
a chaque itération dans la modélisation des cycles suivants et produisent

une distribution pour chaque valeur imputée a la fin.

Enfin, nous étendons l'applicabilité des foréts aléatoires autoréplicatives
aux données génomiques de haute dimension, notamment aux ensembles de
données de polymorphismes mononucléotidiques, en imputant les valeurs
manquantes dans des fenétres séparées et en incorporant les fenétres traitées
dans la modélisation des suivantes de maniére enchainée. Notre approche
présente des résultats compétitifs, voire supérieurs, par rapport a d’autres

méthodes sans référence.
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Chapter 1

Introduction

Information and data in today’s world are everywhere. It is natural for hu-
mankind to collect and analyze this information and make inferences and
decisions based on interconnections within the data. Automated machine
learning has gained huge popularity in recent years and has successfully
helped people in data processing. In the case of labeled data, a machine
learning algorithm is able to explore the connections and interactions be-
tween the properties of a particular data instance and its label and hence to
predict labels of new incoming unlabeled instances. Frequently, an instance
may be associated with a set of multiple outputs, also known as targets or
labels, instead of a single one. This scenario is known as multi-output learn-
ing and is encountered in a wide variety of domains. While it is possible
to build a separate model for each output, the relations and dependencies
between the data and outputs can be captured in a fundamentally more

profound way if the outputs are modeled jointly by a single model.



Introduction 2

1.1 Real-world applications of multi-output

modeling

In this section, we discuss a few examples of application areas for multi-
output machine learning methods. However, we want to emphasize that this
is just a very small subset of domains where the perspective of multi-output
modeling is relevant. In the examples below, the targets are expected to

impact each other, and the joint modeling can reveal these interactions.

e Medical Diagnosis and Treatment design

Multi-output methods can be used to predict various medical out-
comes simultaneously, such as predicting the progression of different
diseases, suggesting personalized treatment plans, and predicting pa-
tient outcomes (e.g. survival rates, and recovery times) influenced by

the previous factors.

o Environmental Monitoring and Analysis

Multi-output models can predict multiple environmental variables like
air quality, temperature, humidity, and pollution levels, enabling a
more comprehensive understanding of environmental conditions and

their impact.

o Climate Modeling

Climate models often involve predicting various climate-related vari-
ables like temperature, precipitation, sea levels, and ocean currents,

which are interconnected and impact each other.

o Vegetation Forecasting

Vegetation models may, for example, describe the ratios of vegetation
types per earth unit. By altering, e.g. the climatic or soil variables,
we can query potential vegetation distribution in the changing envi-

ronment.
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e Bioinformatics and Genomics

Multi-output methods can be employed to predict various properties
of biological molecules, such as predicting the function of proteins,

gene expression levels, and interactions between different molecules.

« Image Analysis and Computer Vision

Multi-output models can simultaneously predict different attributes
in images, such as object detection, segmentation, and recognition of

multiple objects within a single image.

e Social Media Analysis

In social media, multi-output methods can be used to predict multiple
user engagement metrics, sentiment scores for different aspects of a

text, and user behaviors across various social platforms.

o Energy Consumption Forecasting

Predicting multiple energy consumption variables, such as electric-
ity, gas, and water usage, can help optimize energy distribution and

management in smart grids and buildings.

In this thesis, we discuss in more detail multi-output modeling for potential
vegetation prediction (e.g. in the absence of human and urban activity) as
well as missing value imputation in genomics data (which may be further

used for detecting associations between the genotype and phenotypes).

1.2 Goals and objectives

The overall goal of this thesis is to develop and enhance machine learning
methods capable of uncovering and exploiting potential connections and

relationships between the outputs. We aim to have an impact in the field
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of multi-output modeling by enlarging the area where the multi-output

approaches are beneficial and thus promoting their usage in general.

Generally, the fundamental objectives of this thesis include the adapta-
tion of the existing machine learning multi-output techniques in the cases
where they perform sub-optimally. More specifically, we begin with throw-
ing new light on the modeling of multi-modal target distributions where
existing multi-target approaches typically do not capture such specific data
structures and tend to predict non-relevant values that are in fact rarely

observed.

After that, we bring up the problem when some of the target values are
known after the training and before the prediction and are to be incorpo-

rated into the joint inference of unknown targets.

We hypothesize and further prove that in both scenarios the multi-output
methods known in the literature as Regressor Chains can be generalized to
perform more refined joint modeling and thus address both aforementioned

challenges.

Finally, we point out that the imputation of missing values in features can
be viewed as a multi-output predictive problem where, consequently, joint
multi-output modeling may achieve superior performance. We discuss the
related work from this perspective and uncover new insights on how multi-
output methods such as Random Forests can be successfully adapted for

missing value imputation, or denoising, in the data.

1.3 Summary of contributions

The first part of this thesis is dedicated to the challenges of multi-target
regression, i.e. when the outputs are continuous. One of the classic multi-
target methods is Regressor Chains which order targets into chains and

incorporate information about the previous targets into the predictions of
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the subsequent ones. We propose a new approach, Multi-Modal Ensembles
of Regressor Chains (mmERC), which improves the performance of Re-
gressor Chains when the data distribution is multi-modal, e.g. consists of
several clusters. In this case, traditional models including Regressor Chains
tend to put the predictions in between actual clusters, where the data is
unlikely to exist in practice. Our approach is better adapted to such data

distributions and successfully models multi-modal distributions.

Another challenge of multi-target Regression Chains is how to include in-
formation about target values that come known in the prediction phase.
While one may argue that it is possible to predict all targets and mod-
ify the known ones, the question of interest is the joint distribution of
these targets, when modifying one target affects the predictions of the oth-
ers. From a certain point of view, this problem may be reformulated as
missing value imputation in the target space, where some values are ob-
served and others need to be predicted, or imputed. To this end, we design
Metropolis-Hastings sampled Regressor Chains (mhsRC) and Metropolis-
Hastings sampled Ensembles of Regressor Chains (mhsERC) which allow
backward inference and modeling of the outputs together while incorpo-
rating the given information about the targets. We apply this approach
to both synthetic and real-world vegetation distribution data and study

potential vegetation distribution when the urban activity is removed.

The second part of this thesis is dedicated to missing value imputation
which we consider as a multi-output problem, where features become tar-
gets to predict, or impute. We propose Autoreplicative Random Forests
in procedural (pARF), iterative (itARF), and distributional iterative (di-
tARF) versions. Autoreplicative Random Forests receive the same set of
features as inputs and outputs and successfully train to denoise, or im-
pute, data. Additionally, we compare different existing methods for missing
value imputation and incorporate them into a common framework where

a method can be selected via hyperparameter tuning. In an experimental



Introduction 6

study, we show that Autoreplicative Random Forests are very efficient for

missing value imputation while maintaining low computational complexity.

We also propose an extension of ARFs, Chains of Autoreplicative Random
Forests (ChARF), for missing value imputation in Single Nucleotide Poly-
morphism (SNP) genomic data. The important characteristics of such data
are that the data is high-dimensional but low-sampled and ordering of the
features is important. The proposed solution, ChARF, takes into account

these properties and outperforms the baselines in most experiments.

1.4 Thesis organization

The remainder of the thesis is organized as follows. Chapter 2 presents the
background required for understanding the specifics and challenges of multi-
output modeling together with a general overview of the related work. In
Chapter 3, we present Multi-Modal Ensembles of Regressor Chains. Chap-
ter 4 discusses backward inference in probabilistic Regressor Chains and
introduces Metropolis-Hastings sampled [Ensembles of] Regressor Chains.
Chapter 5 describes missing value imputation as a multi-label task and
presents Autoreplicative Random Forests which successfully solve this prob-
lem. In Chapter 6, we present Chains of Autoreplicative Random Forests
which impute missing values in high-dimensional and low-sampled Single
Nucleotide Polymorphisms data. Finally, Chapter 7 concludes the thesis
by providing an overall summary of our contributions, and by presenting

potential future work to extend the research explored in this thesis.

1.5 List of works appearing in this thesis

The contributions in this thesis are available as published articles or preprints.
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o E. Antonenko and J. Read. Multi-modal Ensembles of Regressor
Chains for Multi-output Prediction. Advances in Intelligent Data
Analysis XX, IDA 2022.

o E. Antonenko and J. Read. Chains of Autoreplicative Random Forests
for missing value imputation in high-dimensional datasets. ArXiv e-
prints, 2023. This preprint was presented at the Multi-Label Learning
workshop, ECML PKDD 2022, and received the Best Paper award.

« E. Antonenko, A. Carrefio and J. Read. Autoreplicative Random

Forests for missing value imputation. preprint, 2023. Preprint.

o E. Antonenko, R. Beigaité, M. Mechenich, J. Read and I. Zliobaite.
Backward inference in probabilistic Regressor Chains with distribu-

tional constraints. preprint, 2023. Preprint.






Chapter 2

Background

This thesis is focused on multi-output predictive models. In this chap-
ter, we provide a general introduction to this domain. First, we describe
the concept of machine learning and explain the key ideas behind this
field. Second, we introduce multi-output models, followed by marginal and
joint modeling in multi-output settings. Further, we proceed with giving
background on some particular multi-output methods. Then, we describe
missing value imputation which may be also seen as a multi-output predic-
tion problem. We conclude this chapter by summarizing the notation used
throughout the thesis.

2.1 Machine learning

Machine learning is a fast-developing discipline that investigates the way
computers can automatically search for the best model to explain the data

via an optimization process. The targeted model automatically captures
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complex patterns in data and makes intelligent decisions based on the ex-

tracted information.

In supervised learning, models are built with an input set of feature vec-
tors X and an output set of target targets Y (comprising one or several
targets), each represented by a number of instances. Each instance x € X
is described by a feature vector @ = [z1,...,z,| and associated with an
output vector y = [y1,...,yz], a dataset D = {(x,y)}, consists of N
instances. If the output is represented by categorical variables, the task is
called classification. If the outputs are continuous, the task is called regres-
sion. The objective of supervised learning is to build a function h : X — Y
which can predict outputs Y from input features X and is defined by a set

of parameters 6.

Supervised models learn to optimize a loss function L(}A/, Y’) measuring the
error between the predictions ¥ = h(X) and the true values Y. A loss
function, also known as a cost function or an objective function, provides
a measure of the quality of the model’s predictions. The choice of an
appropriate loss function depends on the specific learning task. Training a
model corresponds to optimizing a loss function. A metric is a function used
to measure the predictive performance of your model. Metric functions are
similar to loss functions, except that the results from evaluating a metric
are not used when training the model. Any loss function can be used as a

metric.

Among popular classification loss functions are, for example, Zero-One
(0/1) Loss, Binary Cross-Entropy (Log Loss), and Categorical
Cross-Entropy. Zero-One Loss measures the fraction of incorrect predic-

tions among all instances,

1 .
Lossor = SI(Gi # yi).
=1
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Binary cross-entropy is commonly used in binary classification problems. It

measures the dissimilarity between the predicted probabilities L(p(Y),Y)
and the true binary labels,

N
Logloss = 3 ~(u log(p(7)) + (1 ~ vy log(1 ~ p(7)).
Binary Cross-Entropy encourages the model to output high probabilities for
the correct class and low probabilities for the incorrect class. Categorical
Cross-Entropy extends Binary Cross-Entropy to multiple classes. The loss
quantifies the divergence between the predicted class probabilities and the
true class labels. While these are examples of common loss functions that
are used quite extensively, there are many other specialized loss functions
designed for specific tasks or domains. The choice of the loss function
depends on the learning task, the characteristics of the data, and the desired

behavior of the model.

Exact Match and Hamming Score are among popular classification met-
rics [Tsoumakas and Katakis, 2007]. Exact Match, or simply Accuracy
in single-output machine learning tasks, measures the fraction of correctly
predicted instances, i.e. instances with all labels predicted correctly, and
can be presented as Exact Match = 1 — Lossy;. Hamming Score counts the

fraction of per-output labels predicted correctly,
1 1 N L
Hamming Score = — - — > > " 1(9i; = yij).
N Li=5

In this thesis, we will refer to Exact Match and Hamming Score as joint

accuracy and marginal accuracy respectively.

In regression tasks, Mean Squared Error (MSE) and Mean Absolute Error
(MAE) are widely used. MSE computes the average squared difference
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between the predicted and true values,

(yi — 0:)°.

M=

1
MSE =
N 1

i

The squared term gives higher weight to larger errors, making it sensitive to
outliers. The goal is to minimize MSE, which leads to estimating the mean
or expected value of the target variable. Mean Absolute Error calculates
the average absolute difference between the predicted and true values,

1 X R
MAE = szzl\yl — il .
Compared to MSE, it is less influenced by the magnitude of errors. MAE is
more robust to outliers but can be less sensitive to subtle differences. Mini-
mizing MAE implies estimating the median of the target variable. Another
possible choice is Uniform Cost Function (UCF) [Burger and Lucka, 2014]

as an approximation of 0/1 Loss for regression setting,

1 & |Oif [lyi — Gilla < 2,
UCF(8) = ~ e =41l <
Ni= |1 otherwise,

where ¢ is an adjustable parameter defining the size of the neighborhood

of ground-truth points.

2.2 Multi-output models

In traditional machine learning tasks, such as classification or regression,
a single label y is assigned to each data point. However, in multi-output
learning, an instance can be associated with multiple labels y = [y1, ... yr]

simultaneously. In this setting, an algorithm is trained to predict multiple
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labels or targets for each instance. This task is called multi-target predic-
tion in [Waegeman et al., 2019]. Multiple outputs may often be correlated

with each other, and the use of this information may boost predictive qual-
ity.

For example, an email classification system may illustrate a multi-label
problem. In a traditional email classification task, the goal is to assign a
single label to each email, such as “spam” or “not spam”. This is a binary
classification problem where each email is either classified as spam or not.
In multi-label learning, the email classification task is extended to allow
assigning multiple labels. For example, an email can be classified as both
“not spam” and “urgent” simultaneously. In this case, the algorithm needs

to learn to predict multiple labels for each email.

Another well-known example is image classification where some labels may
be correlated and have a higher chance to explain each other, e.g. an object
looking similar to a palm tree is likely to be in pair with an object looking
like a beach chair but much less likely to be coupled with an office chair.
Multi-target regression may be used, for example, in predicting affinity of
different drugs to proteins, or gene expression under multiple scenarios.
Physical characteristics of a plant such as height, weight, fertility, protein
concentration, etc., predicted from characteristics of the surrounding earth

may be considered as another example of multi-target prediction.

The main challenge in multi-output learning is dealing with the inherent
complexity of the output space and dependencies between the outputs.
Each target can be treated as a separate single-output problem, but the
presence of multiple targets introduces interactions and correlations be-
tween them. The algorithm needs to capture these dependencies and make

accurate predictions for each output.

In [Kocev et al., 2013], multi-target prediction is discussed with a focus on
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ensembles of predictive clustering trees and the presence of specific struc-
tures in the target space, e.g. hierarchies between the targets. In [Waege-
man et al., 2019], authors present a more recent unifying view on multi-
target prediction and discuss similarities and differences between related

problems and methods.

As in traditional single-output machine learning, multi-output settings may
fall into two subcategories, multi-label classification (where the outputs
take categorical values) and multi-target regression (where the outputs take
continuous values). An extensive review of the multi-label classification set-
ting is given in [Tsoumakas and Katakis, 2007; Zhang and Zhou, 2014] along
with discussion of recent trends and open issues in [Mylonas et al., 2023],
and multi-target regression has been recently discussed in [Waegeman et al.,
2019].

2.2.1 Marginal and joint modeling

Independent learning also known as marginal learning, a straightforward
approach for multi-output modeling, refers to an approach where each task
or variable is learned independently, without explicitly considering the de-
pendencies or relationships with other tasks. In the classification context,
this approach is known as the binary relevance method [Tsoumakas and
Katakis, 2007; Godbole and Sarawagi, 2004]. Given an instance x, the

prediction is obtained as

9=, 0L] = [M(x), hao(x), ..., hp(x)].

This means that L models are trained to maximize the marginal proba-
bilities p(y; | «) separately for each target y;, j = 1,...,L. An important
advantage of this approach is flexibility as each model h; can be optimized
separately, allowing for different algorithms or hyperparameters to be used

for each model, based on specific characteristics of each task. However,
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the interdependencies between the targets are completely ignored which
can lead to suboptimal performance or prediction of impossible combina-
tions [Park and Fiirnkranz, 2008; Elisseeff and Weston, 2001; Godbole and
Sarawagi, 2004].

Joint modeling refers to a learning approach where multiple tasks or vari-
ables are learned simultaneously. In joint learning, a model considers all
tasks or variables together, capturing the dependencies and interactions
between them and maximizing the joint probability p(y|«). The goal is
to leverage the shared information across the tasks to improve overall per-
formance. Such an approach allows exploiting shared structure as joint
learning can leverage the relationships and dependencies between tasks to
improve predictive accuracy. So far, there is a consensus among the re-
searchers from the domain that output interdependencies have to be incor-
porated into the modeling [Luaces et al., 2012; Tsoumakas and Katakis,
2007; Guo and Gu, 2011; Alvares-Cherman et al., 2012].

2.2.2 Maximum Likelihood Estimation

One of the common approaches for estimating the joint probability of a
dataset is Maximum Likelihood Estimation (MLE). This strategy treats the
problem as an optimization problem, where a set of parameters that results
in the best fit for the joint probability of the data sample is estimated. In
a machine learning setting, this corresponds to maximizing the probability
of observing the targets y from the joint probability distribution P(y |z, 0)

given unknown parameters 6 of a classfication or regression model.

The Expectation-Maximization (EM) algorithm is an approach for Maxi-
mum Likelihood Estimation in the presence of latent variables (or, in par-
ticular, missing values or labels), that is to say, that not all variables related
to the problem are observed [Bishop, 2006]. The EM algorithm is an itera-

tive approach consisting of two repeating steps. In the first estimation step
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(E-step) the algorithm attempts to estimate the missing or latent variables.
The second maximization step (M-step) tries to optimize the parameters
of the model to best explain the data. The EM algorithm has a wide
range of applications, although is perhaps most well-known for its use in

unsupervised learning problems, such as density estimation and clustering.

2.2.3 Algorithm adaptation approaches

Algorithm adaptation methods address multi-output problems directly by
adapting some existing learning algorithms to a multi-output scenario.
Tree-based models are among the most popular machine learning approaches
which can be used both for regression and classification in general and, in a
multi-output setting, follow into the algorithm adaptation family of meth-
ods.

A Decision Tree (DT) [Breiman et al., 2017], an underlying structure in this
methods family, is a tree graph structure and consists of nodes connected
by directed edges. Every node may have outgoing edges connecting it to
its children. The final nodes with no output edges are called leaves. The
top node which has only outgoing edges (and no ingoing ones) is called the
root. Fig. 2.1 illustrates a decision tree and its decision boundaries in a

single-output setting.

Predictive Clustering Trees [Blockeel et al., 2000; Kocev et al., 2013] are
a well-established generalization of Decision Trees, where each node repre-
sents a data cluster and each edge corresponds to a decision rule. Starting
from the root which contains all data points, all nodes are split recursively
by applying a decision rule to one of the features. The task of a machine
learning algorithm is to identify the optimal split using the split quality
criterion. The tree-growing process is stopped when the stopping criterion
is reached, and each terminal node, i.e. leaf, is associated with an output

value. In the prediction phase, each incoming instance traverses the tree
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FIGURE 2.1: Single-output decision tree (A) and its decision boundaries
(B) on a dataset with two variables and one binary label.
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from the root to a leaf and is assigned the output value of the leaf. The
PCT method has been also extended to predict multiple output variables
in [Kocev et al., 2013]. In multi-output prediction, each leaf of a tree is

assigned a combination of output values.

Random Forest (RF) [Breiman, 2001] is an ensemble of multiple decision
trees. To introduce diversity in the learning process, each tree is built
on a random subset of features and bootstrap replicates of the training
instances. The final prediction is a major vote for all tree predictions in the
classification scenario or their mean average in the regression case. This
holds equally for single- and multi-output Decision Trees [Kocev et al.,
2013].

Random Forests are often preferred over single Decision Trees as they typ-
ically show better performance. While building multiple trees instead of
a single one may seem more computationally expensive, taking a random
subsample of features per tree alleviates this drawback. Also, the building
process is straightforward to parallelize as trees are built independently.
Though Decision Trees are considered easier to interpret as a consequence
of decision rules, Random Forests may still provide feature importances
computed as a total reduction of the criterion brought by each feature.

Fig. 2.2 illustrates a Random Forest!.

In general, multi-output tree-based methods may be considered as algo-
rithm adaption approaches as they adapt to handle multi-dimensional out-
puts. Both multi-output Decision Trees and multi-output Random Forests
typically outperform their single-target versions applied to all features sep-
arately one by one. Also, they are a frequent choice in problem transfor-

mation approaches described in more detail in the next section.

1Created with BioRender.com
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F1GURE 2.2: Ilustration of a Random Forest as an ensemble of trees.
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2.2.4 Problem transformation approaches

Another family of multi-output methods is problem transformation methods

that transform a multi-target problem into multiple single-target problems.

For example, the Binary Relevance (BR) [Tsoumakas and Katakis, 2007;
Godbole and Sarawagi, 2004] approach straightforwardly transforms a multi-
output problem into a set of independent single-output problems while com-

pletely ignoring correlations and interdependencies between the targets.

The Label Powerset (LP) [Tsoumakas and Katakis, 2007] method considers
each combination of output values into a unique class, and thus can be
exploited in a classification setting but not in a regression problem. A
popular Random k-Labelsets (RAKEL) [Tsoumakas and Vlahavas, 2007]
approach generalizes the LP method by considering a small random subset
of labels and learning a single-label classifier for the prediction of each

element in the powerset of this subset.

Another well-known representative of the problem transformation family
of methods is a chaining approach implemented, e.g. in Regressor and
Classifier Chains. The initial idea of the chaining approach, for classi-
fication [Read et al., 2011], was to arrange per-target models in a chain,
such that the previous labels are used to train each next model in the train-
ing phase and the output prediction of one model becomes an additional
feature for the subsequent models in the prediction phase. That is, given

an instance x, we obtain a prediction as

:l; = [Qh "'7:gL] = [hl(m)JhQ(w7gl>7 "‘7hL(ang17 "'7@[1*1)]'

Each estimator h; in the chain takes [z1,...,%p,¥1,...,yj—1] as feature
space and is trained to predict ;. In the testing phase, the algorithm
begins with y; and propagates predictions g along the chain, on each step

augmenting the feature space by the predictions of the previous estimators.
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As opposed to independent modeling (binary relevance in classification,
Fig. 2.3a), the chaining approach allows the model to capture the depen-
dencies and interactions between the target variables. An important char-
acteristic of Regressor Chains is that they can utilize various base regression
models including non-differentiable ones, e.g. linear regression, tree mod-
els, or support vector machines, for each target variable in the chain. The
choice of the base model depends on the characteristics of the problem and
the desired performance. The main advantage of Regressor Chains is their
ability to benefit from the interdependencies between target variables by
leveraging the predictions of the previous models. It allows the models to
exploit the relationships among the targets, potentially leading to improved

predictive performance.

The order of the chain clearly has an impact on the model’s ability to learn
interdependencies between the targets and thus predictive performance.
Different approaches have been suggested to optimize chain order includ-
ing evolutionary algorithms [Moyano et al., 2017] and using correlation to
build the best structure [Melki et al., 2017]. Another way to obtain better
results for Classifier and Regressor Chains is using Ensembles of Classi-
fier or Regressor Chains (ECC and ERC) with random chain orders [Read
et al., 2011; Spyromitros-Xioufis et al., 2016].

Classifier Chains have proved to have high predictive performance and are
widely known as one of the state-of-the-art techniques for multi-label mod-
eling [Dembezynski et al., 2012; Read et al., 2021]. Although they seem
naturally extendable to a regression setting, Regressor Chains are less ro-
bust and may be more sensitive to, e.g., suboptimal chain order or errors
propagating along the chain [Read and Martino, 2020]. However, Regressor
Chains are still a popular model choice and have been successfully applied
to a number of problems, e.g. [Wu and Lian, 2020; Poonawala-Lohani et al.,
2021; D’hondt et al., 2023].
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The original Regressor and Classifier Chains definition [Read et al., 2011]
referred to a fully-connected cascade, Fig. 2.3b; nevertheless, this view
may be extended to the chains with any Directed Acyclic Graph (DAG)
order [Read et al., 2021], for example, Markov chains (Fig. 2.3c), trees
(Fig. 2.3d and [Ramirez-Corona et al., 2014]), arbitrary DAGs (Fig. 2.3e
and [Zhang and Zhang, 2010]). The chaining approach may be also adapted
to an undirected and cyclic framework, i.e. beyond the aforementioned
DAG formulation. For example, [Guo and Gu, 2011] proposed a fully-
connected bi-directional classifier graph, a network shown in Fig. 2.3f. The
advantage of such a model is the full connectedness: a prediction for any
y; can influence a prediction for any gy, and vice versa. The inference
phase of this method is inherently more expensive compared to a single
greedy pass used by Classifier Chains because many iterations through the
graph, or cycles, are needed to arrive at the convergence of an estimate.
In [Read and Martino, 2020], Regressor Chains were further developed into

a probabilistic framework.

A Classifier or Regressor Chain may be also seen as a particular imple-
mentation of a Bayesian Network, specifically a hybrid Bayesian network
[Salmerén et al., 2018] in the regression case. It is worth noting that in clas-
sic Bayesian Networks training is extremely costly and inference options are
limited, normally corresponding to linear-Gaussian models or approximate

methodologies based on sampling, and variational inference.

An alternative non-chaining approach in regression is Regressor Stack-
ing [Spyromitros-Xioufis et al., 2016; Santana et al., 2017] which includes
predictions of single-target regressors as new features for the next rounds of
training. The Multi-Target Regressor Stacking [Spyromitros-Xioufis et al.,
2016] method consists of separately training single-target models for each
output and using their prediction as additional features for the second
round of training. Considering a dataset composed by X = {z1, z2,...,2,}

input features and Y = {y1, ¥, ...,yr} target outputs, this approach uses
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the single-target predictions V = {91,792, .--,9r} as new features, forming
a new training dataset X' = {z1, 29, ..., 2p, 91, J2, ..., yr.}. The transformed
input is used to train the second regressors’ layer of L single-target models,
whose outputs are the final predictions. In Deep Regressor Stacking [San-
tana et al., 2017] a similar idea is used, but several layers of re-prediction
are performed. The authors show that the predictive error may lower with

a rise of number of layers.

2.3 Missing value imputation

Missing values are abundant and remain a very important issue in real-
world data in all domains. They refer to the absence of data for a particular
feature and instance in a dataset. Further, we denote by Xi,j a random
variable that corresponds to a missing value in the i-th instance and j-th
feature and has to be estimated, i.e. imputed, and by X = {f(”} the set

of all missing value in the data.

Missing values can occur for various reasons, such as data entry errors, data
loss during collection or storage, non-response in surveys, and many others.
Handling missing values is important as their mistreatment may bias pre-
dictions, affect statistical analyses negatively, and impact the performance

of machine learning models.

Missing values may be traditionally classified into three types with regard
to the pattern of missingness. These are Missing Completely at Ran-
dom (MCAR), Missing at Random (MAR), and Missing Not at Random
(MNAR) [Santos et al., 2019]. When values are Missing Completely at
Random, the missing values occur randomly, and their presence or absence
does not depend on observed or unobserved data. In the Missing at Ran-
dom case, the missingness is related to observed variables but not to the
missing values themselves. When values are Missing Not at Random, the

probability of missingness depends on the values that are missing.
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Missing values can lead to biased estimates, especially if the missingness
is related to the variable being measured, i.e. values are missing not at
random. In particular, ignoring missing values can reduce the sample size
and subsequently decrease the statistical power of the analysis, making it
difficult to detect significant effects or relationships. Additionally, missing
values can distort the relationships between variables, leading to inaccurate

interpretations and conclusions.

For example, let us consider a study examining the effects of a new teach-
ing method on students’ academic performance. The researchers collect
data on students’ test scores before and after implementing the new teach-
ing method. However, they encounter a missing values problem for the
post-method scores, as some students were absent on the day of the test
or failed to complete the test for various reasons. To address this issue,
the researchers exclude the students with missing data from their analy-
sis and only analyze the data from those students who provided complete
information on both pre-method and post-method scores. After analyz-
ing the available data, they find a significant improvement in the average
test scores. Based on this result, they infer that the new teaching method
is effective in enhancing students’ academic performance. However, this
conclusion may be biased due to the exclusion of students with missing
post-method scores. For instance, the absent students might have had
lower motivation or struggled more academically, leading to a potential un-
derestimation of the effects of the teaching method. By excluding students
with missing post-method scores, the researchers unintentionally introduce
bias into their analysis. The excluded students may have different outcomes
compared to those included, and this can impact the observed improvement

in test scores.

Some machine learning algorithms can handle missing values inherently

(e.g. variations of decision trees) and can work with datasets containing
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missing values without additional preprocessing. However, most off-the-
shelf machine learning methods are not able to do this. This increases the
necessity for imputation methods, i.e. filling in missing values with esti-
mated values based on observed data. Various imputation techniques aim
at replacing missing values with plausible values, maintaining the integrity
of the dataset.

One of the simplest though common approaches is imputation with some
statistics, e.g. mean, mode, or median of the observed values [Little and
Rubin, 2019]. Though simple and fast, this approach does not consider any
relationships between variables and may not accurately represent the true

values.

Another popular approach is hot deck imputation which replaces missing
values with values from similar instances in the dataset. It involves finding
the nearest neighbors based on a similarity measure and imputing the miss-
ing values with values from those neighbors. For example, this approach is
implemented in [Schwender, 2012] by using the k-Nearest Neighbors algo-
rithm. Hot deck imputation is better adapted to preserve the relationships

between variables.

A more complex approach is building a prediction model for each variable
using the complete or randomly pre-imputed cases and using that model to
predict the missing values [Montiel et al., 2018; van Buuren and Groothuis-
Oudshoorn, 2011; Stekhoven and Bithlmann, 2011]. For each target vari-
able, a model utilizes all other variables or a subset of them as predictors to
estimate the missing values. In [Montiel et al., 2018] the available complete
values of other features are used to train a model, while [van Buuren and
Groothuis-Oudshoorn, 2011; Stekhoven and Bithlmann, 2011] first fill the
missing values randomly or with some statistics, and then iteratively up-
date the values until a convergence criterion is met. This family of methods
may remind the binary relevance method from multi-output prediction as

an independent estimator is built for each feature.
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Finally, advanced machine learning algorithms, such as deep learning and
in particular Denoising Autoencoders [Vincent et al., 2008], can be used for
missing value imputation. These algorithms learn patterns and relation-
ships from the available data and use that knowledge to predict missing
values. These techniques can handle complex data structures and capture
non-linear relationships, but they may be computationally expensive and
require careful tuning. Autoencoders are a type of neural network designed
to learn efficient representations or compressed versions of input data. Au-
toencoders consist of an encoder network that maps the input data to a
typically lower-dimensional latent space, and a decoder network that recon-
structs the original input data from the latent representation. The encoder
may consist of one or more hidden layers, which gradually reduce the di-
mensionality of the input data. A latent space, or encoding, is a compact
representation of the input data learned by the encoder. It captures the
most important features or patterns in the data. The decoder takes the
encoded representation from the latent space and reconstructs the original
input data. Similar to the encoder, the decoder consists of one or more
hidden layers that gradually increase the dimensionality of the data to
match the original input dimensions. The performance of an autoencoder
is evaluated based on the loss function of the original input data and its re-
construction from the latent representation. Autoencoders are widely used
to denoise corrupted or noisy input data as well as impute missing data.
By reconstructing the original clean data from inputs presenting missing

values, they effectively learn to replace these gaps with reasonable values.

While missing values are widely seen in real-world datasets in all appli-
cation domains and are typically imputed in a pre-processing step before
further data analysis, some studies show that it might be beneficial to
impute missing values in the feature space and model targets simultane-
ously [Le Morvan et al., 2021; Perez-Lebel et al., 2022].

On the other hand, in particular problems we may observe incomplete
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data in the target space when values of some of the targets are observed
while others are missing [Beigaité et al., 2022]. In this case, instead of just
predicting the unobserved targets it is beneficial to include information from
the observed values to explore possible correlations between the targets
with observed and unobserved values. As a motivating example of such
problem, we study possible vegetation in the absence of human activity.
In this setting, we may observe only data when urban types are present
and aim to predict shift of vegetation distribution when urban types are

‘provided’, i.e. set to zero.

2.4 Single Nucleotide Polymorphisms

Single Nucleotide Polymorphisms (SNPs) represent genetic variation among
individuals given by single nucleotide differences at specific positions in
the DNA sequence (Fig. 2.4). For example, at a specific position, one
person might have an adenine (A), while another person might have a
guanine (G). These single nucleotide differences can be used as genetic
markers to track genetic variation across populations. Single Nucleotide
Polymorphisms genotyping typically involves using high-throughput geno-
typing technologies to determine the genotype (i.e. variant of the SNP) at
specific SNP positions for each individual. This information is then used
to assess the association between SNP genotypes and the trait of interest,
widely known as Genome-Wide Association Study (GWAS) [Manolio, 2010;
Uffelmann et al., 2021]. It involves examining the entire genome of indi-
viduals to detect association of particular SNPs with one or several traits
of interest. GWAS studies have contributed to significant advancements in
our understanding of the genetic basis of complex traits and diseases. They
have identified numerous SNPs associated with various traits and provided
insights into the underlying biology. These findings can have implications
for personalized medicine, risk prediction, and the development of targeted

therapies.
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FIGURE 2.4: Single Nucleotide Polymorphisms. Copyright: Scientific DX
GmbH, 2020
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As happens frequently in real-world data, SNP datasets are prone to the
presence of missing values. These can arise due to various reasons, includ-
ing technical limitations in genotyping platforms, sample quality issues,
biological reasons such as genetic variation and deviations from Hardy-
Weinberg dysequilibrium, or combining different datasets with unequal sets
of features in meta-studies [Das et al., 2018]. Imputation methods are usu-
ally split into two subgroups, reference-based and reference-free methods.
Reference-based approaches require a reference panel of large size and high
quality and remain state-of-the-art methods in human genome studies [Das
et al., 2018]. However, in less-studied species such as most animals and
plants, these reference panels are not available, and thus a need for meth-
ods based only on the data available arises [Davies et al., 2016]. These are
called reference-free and remind us about traditional missing value impu-
tation techniques. However, a very important challenge in SNP data refers
to their curse of dimensionality. The SNP datasets are typically high-
dimensional (10° — 106 features) and low-sampled (102 —10? instances) and
these characteristics raise issues for many machine learning methods [John-
stone and Titterington, 2009]. In this thesis, we propose a method that
handles effectively missing values in SNP data and typically outperforms

other baseline methods.

2.5 Notation

We use the following notation in this thesis:

o X is an input set of p-dimensional feature vectors;
« x € X is an instance, described by a feature vector & = [z, ..., xp];

e Y is an output set of L-dimensional target vectors;
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« Each instance z € X is associated with an output vector y = [y1, ..., yr],
yey;

e D={(x,y)}Y, is a dataset of N samples;
e h:X — Y is a predictive model (regressor or classifier);
e 0 are parameters of the model h;

e y = h(x) is a prediction of multi-output model h for instance x,

A~

'g: [ylu"ng];

« L(Y,Y) is a loss function measuring error between the predictions
h(X) and the true values Y

» p(y|x) is a conditional probability of the output y given the instance

L;

o X, ;is a random variable corresponding to a missing value in the i-th

instance and j-th feature;

« X is a set of random variables {X’m}, i=1,....,N,j=1,...,p.






Chapter 3

Multi-modal Ensembles of

Regressor Chains

Classifier Chains are widely known as a technique that successfully models
the outputs together in the domain of multi-label classification. Although
this approach should be naturally extendable to the multi-target regres-
sion task (as Regressor Chains) and seems to be straightforward to adapt
to the regression setting, large improvements over independent models (as
seen already in the multi-label classification context over the recent decade)
have not as of yet been obtained from Regressor Chains. One of the rea-
sons for the unsatisfying performance of Regressor Chains is the adoption of
squared-error-based loss metrics which do not require consideration of joint-
target modeling. In this chapter, we consider cases where the predictive
distribution can be multi-modal. Such a scenario, which easily manifests in
real-world tasks involving uncertainty, motivates a different loss metric and,
thereby, a different approach. We thus present a new method for multi-

target regression: Multi-Modal Ensemble of Regressor Chains (mmERC),

33
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which performs competitively on datasets exhibiting a multi-modal distri-
bution, both against independent regressors and state-of-the-art Ensembles
of Regressor Chains. We argue that such distributions are not sufficiently
considered in the regression and particularly multi-target regression litera-

ture.

3.1 Introduction

Multi-target prediction algorithms can be a solution to the nowadays ex-
tensively growing number of multi-output data science problems across
academy and industry areas [Waegeman et al., 2019; Xu et al., 2019]. Multi-
label classification, which refers to the multi-output case with binary vari-
ables, has made significant progress in the previous decade. Within this
area, Classifier Chains is a family of methods that have proved to have
high predictive performance [Dembczyniski et al., 2012; Read et al., 2021].
Compared to the naive approach with an independent classifier per label
(known in the literature as binary relevance), advanced methods such as
Classifier Chains are outperforming with regard to the most of the met-
rics. This has been widely attributed to their ability to extract and exploit
the dependencies between the targets, as well as other factors linked to
multi-target modeling [Read et al., 2021; Waegeman et al., 2019].

Chaining methods can be adapted in a straightforward way to the regression
context, known as Regressor Chains. Alongside many multi-label methods,
Classifier Chains are known to perform invariably better than independent
classifiers under empirical study [Madjarov et al., 2012; Bogatinovski et al.,
2022]. However, the performance of Regressor Chains shows relatively few
advantages compared to individual regression models [Read and Martino,
2020].

There has been recent work attempting to unravel some of the explanations

for Regressor Chains’ underperforming [Read and Martino, 2020]. It has
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been identified that Classifier Chains perform well with respect to the 0/1
Loss, i.e. modeling the labels jointly and, in the probabilistic sense, seeking
out a posterior mode. However, in the case of Regressor Chains, an almost-
ubiquitous choice of loss metric is the Mean Squared Error (MSE) or its
variants; as also for regular regression problems. By definition, minimizing
MSE is the same as maximizing the likelihood of a Gaussian distribution;

it will thus correspondingly incur a posterior mean-seeking behavior.

This may be inadequate if the posterior is bi-modal or more generally multi-
modal. A model which optimizes MSE may place the prediction between
two modes of a hypothetical posterior — a place that will not correspond
to the ground truth and maybe is not even observed in data at all. This
situation is illustrated in Fig. 3.1 for a bi-modal distribution in a single-
target setting. While p(y;) is bi-modal and a mean is visibly distinguishable
from two modes, a Random Forest aims to model a uni-modal Gaussian-like
distribution p(g; | z) especially when a feature z is not highly informative.
Minimizing the Mean Absolute Error (MAE) is similar as it assumes a

[uni-modal] Laplacian rather than a Gaussian [Qi et al., 2020].

There are plentiful real-world examples of multi-modal outputs; these in-
clude, e.g. cases from agriculture [Vasconcelos et al., 2021], evolution biol-
ogy [Hendry et al., 2008], and gene expression [Paliwal et al., 2007]. For
instance, [Hendry et al., 2008] considers a finch (Geospiza fortis) popula-
tion that shows bi-modality in beak size, an important trait in this taxon,
while [Paliwal et al., 2007] studies bi-modality in gene expression for certain
pheromones, which allows a cell population to diversify its transcriptional
response. One more famous example of multi-modal data is described in
[Pearson, 1894], where normal mixture model analysis of the ratios of fore-
head breadth to body length for 1000 crabs sampled at Naples reveals the
presence of two distinct crab species. In such cases, an estimate under MSE

and under uncertainty can be inappropriate.
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Naturally, this discussion of multi-modality relates to regression tasks in
general, but it becomes particularly crucial in many multi-target regression
problems due to the effect of error propagation [Read and Martino, 2020]

and the potential presence and complexity of modes.

This chapter introduces a novel method, Multi-Modal Ensemble of Regres-
sor Chains (mmERC), which combines an ensemble approach for Regressor
Chains [Spyromitros-Xioufis et al., 2016] and a novel mechanism designed
to recognize the multi-modality and to produce the predictions taking it
into account. We argue that multi-modal scenarios are not widely studied
in machine learning research (as opposed to statistics) while taking them
into account can significantly boost the power of machine learning meth-
ods. Our experimental results show an improvement in the performance
of Regressor Chains with the novel technique. In particular, we show that

mmERC can outperform independent regressors.

The rest of the chapter is organized as follows. After summarizing the
background and related work in Section 3.2, we present our method in
Section 3.3. We describe our implementation and the setup for comparison
to independent regressors and standard Regressor Chains in Section 3.4.
The results and their discussion are in Section 3.5. In Section 3.6, we draw

the conclusions.

3.2 Background and Related Work

Following notation from Section 2, we are given a dataset D = {(z, y)}¥,
of N samples, each instance @ = [z1,...,x,] is associated with a vector
y = [y1, ..., yr] of real numbers. Opposite to a straightforward binary rel-
evance approach [Tsoumakas and Katakis, 2007; Godbole and Sarawagi,
2004], Fig. 2.3a, where

:l} = [:&1, ...,gL] = [hl(a:), ...,hL(.’B)],
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FIGURE 3.1: A ground-truth distribution p(y;) vs a distribution of pre-

dictions by Random Forest p(; | z); both provided via a KDE estimate.

Most predictions — when provided under uncertainty (input z is poorly in-

formative here) — are in the space highly likely to be incorrect. The model

aimed to minimize MSE (Random Forest here) puts predictions of most

instances close to zero, between two modes of the real posterior distribu-
tion.
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the method of Classifier Chains [Read et al., 2011] arranges per-target
(base) models in a chain, such that the prediction of one model becomes
an additional feature for the subsequent models. That is, for an instance

x, we obtain a prediction as

g = [Qh "'7@1/] = [hl(m),h2($,g1), ...,hL(iﬂ,:&l, "'7@[1—1)]'

This approach is demonstrated in Fig. 2.3b. It is observed that the perfor-
mance of Regressor Chains can suffer from sensitivity to the chain order.
Different approaches have been suggested to optimize chain order includ-
ing evolutionary algorithms [Moyano et al., 2017] and using correlation to
build the best structure [Melki et al., 2017]. One of the state-of-the-art
solutions to overcome this issue is using an Ensemble of Regressor Chains
(ERC) [Spyromitros-Xioufis et al., 2016], where n random chains are trained
independently. Then the final predictions are obtained as the means of the
n estimates for each target. The same mechanism is used, for example, in
Random Forests [Ho, 1995; Breiman, 2001], that output the average mean
of a number of Decision Trees. However, we observe that while Ensem-
bles of Regressor Chains work on average better than standard Regressor
Chains, they may produce inadequate results in the case of multi-modal dis-
tributions, and the improvement is not as significant as in the classification

scenario. This brings our interest to multi-modal regression.

By taking a squared-error loss metric such as MSE, conventional regression
models predict their estimated mean of the distribution. This approach
may produce inadequate results if the data distribution is bi-modal or multi-
modal (recall the example in Fig. 3.1) or whenever the mode is not close to
the mean. Modal regression (e.g. [Yao and Li, 2014]) is to model a mode
of distribution. The advantages of this approach are that modal regression
is more likely to capture a mode; which corresponds to values that are — in
those settings — more likely to occur in practice. Multi-modal regression has
been approached previously due to its properties of robustness to outliers
and heavy tail distributions [Feng et al., 2020]. In [Read and Martino,
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2020] a probabilistic approach allows to explicitly model the distribution

and take samples to find an approximation of the mode.

The questions related to understanding and modelling multi-modal distri-
butions stand close to predicting multiple hypotheses, e.g. in image classifi-
cation or future step prediction [Rupprecht et al., 2017], where a framework
reformulating existing single-prediction models as multiple hypotheses pre-
diction models is proposed. By optimizing a new meta loss, the proposed
solution outperforms a single-hypothesis approach where averaging over

hypotheses, or mean, is used.

Mode estimation has been studied in the Bayesian statistics literature and,
in particular, maximum a posteriori probability (MAP) estimation [Burger
and Lucka, 2014; Bassett and Deride, 2018]. These methods suggest, in

particular, optimizing the Uniform Cost Function,

N 10 if i A’L' < é;

Ni= otherwise,

as an approximation of 0/1 Loss within §-neighborhood of ground-truth
points. We recall that Classifier Chains are a natural choice if the 0/1 Loss
is to be used, yet this metric cannot be directly optimized in the regression
context where an exact match is unlikely to be obtained on the continuous

spectrum.

Another approach to a regression problem may be to discretize continuous
output space into bins and thus to adapt the problem for a classification
algorithm [Dougherty et al., 1995; Phan-Minh et al., 2020; Spyromitros-
Xioufis et al., 2020]. In [Phan-Minh et al., 2020], this is done for predicting
trajectories of a self-driving engine. In [Spyromitros-Xioufis et al., 2020],
a framework for solving multi-target regression problems via output space
quantization is proposed. Though such an approach allows joint modelling

by well-performing classification methods, the outputs continuity is lost,
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while we should solve a computationally difficult multi-class multi-label
problem with big number of classes per label. Also, finding a good dis-

cretization may be itself a complex task [Sokolovska et al., 2018].

The similarities and differences of regression and classification metrics, as
well as regimes when they are better to be used, are discussed, for exam-
ple, in [Muthukumar et al., 2021] for overparameterized models. In any
case, these mentioned works do not consider multi-target regression set-
tings. Multi-modality was considered in the context of multi-target regres-
sion in [Read and Martino, 2020], but specifically to probabilistic models,
therefore their study could not include methods such as tree-based meth-
ods; and results were not strong. In our experiments, Decision Trees and
Random Forests show competitive performance both as independent meth-

ods and as base models for Regressor Chains.

In this case, we suggest the UCF as a useful alternative for comparing model
performance. In the following Section 3.3, we present our novel approach to
minimize this loss, Multi-Modal Ensembles of Regressor Chains (mmERC)
that adapt the ERC method to datasets with multi-modal distribution and
do not require an explicit probabilistic analysis, allowing the application of

more diverse base classifiers regressors such as decision trees.

3.3 Multi-Modal Ensembles of Regressor
Chains

We present our novel method, Multi-Modal Ensemble of Regressor Chains
(mmERC), which aims at providing successful outputs in the context of
multi-modal distributions. The new approach is based on Ensembles of Re-
gressor Chains while targeting the Uniform Cost Function as a loss function.
However, as Regressor Chain-based methods bear a significant advantage of

being very flexible with regard to a choice of per-target base estimators, we
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want to maintain this flexibility and thus do not target the loss function of
base estimators directly. Instead of this, we simulate minimizing the UCF

function by two mechanisms that can be used with any base estimator.

3.3.1 Mechanism 1: one base estimator training

Using UCF as a loss function promotes mode-seeking by entailing a uniform
penalty when the correct mode is not found; unlike MSE which entails a

quadratic penalty. We select correntropy [Feng et al., 2015],
COI’I’(yZ'j,gZ']‘) =1 —ei(yijigij)z, 1= 1,...,N, j = 17...,L, (32)

as a smooth approximation of UCF, allowing fine-grained threshold selec-
tion. The MSE, UCF, and correntropy metrics are compared in Fig. 3.2.
The UCF and correntropy errors significantly increase when the prediction
does not fall to a small neighborhood of the truth point but stays nearly

constant when the prediction is far from this neighborhood.

As in traditional Regressor Chains, we train one base estimator per target
y; at a time, j = 1,..., L. Initially, we train the first regressor on the entire
dataset D. After that, we measure the performance of the predictions of the
trained model under correntropy. We select a subset of instances {x;} of D
of size s- N, 0 < s < 1, with the lowest correntropy corr(y;; —¥;;) and train
the second regressor on this reduced dataset. By using this mechanism, we
aim at cutting off the instances with too much uncertainty and training
on the instances which provide more information on the cluster choice,
thus improving the optimization process of the regressor. The parameter
s is a hyperparameter of the proposed method and is later evaluated in
Section 3.4.

This process bears some resemblance to iteratively reweighted least squares

or Expectation Maximization (EM) as mentioned in [Yao and Li, 2014]
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F1GURE 3.2: Comparison of Mean Squared Error (MSE), Uniform Cost
Function (UCF), and correntropy; for single target estimate where true
Yy = 0.

Algorithm 1 mmERC: training h; for target y; (done for j =
1,...,L)

1: procedure FI1T(h;, {z,y;})> Train Base Estimator h; for target y; on

{z,y;}
hj < clone of h;

fit }AL; on {(x,y;)} > First training phase (full training set)
§; < hj(z) > Prediction of hj on z
corr + 1 — e~ Wi=%)’ > Correntropy; See Eq. 3.2
{=',y;} C{x,y;} > Top s-instances wrt (lowest) corr, 0 < s < 1
fit hy on {(',y;)} > Second training phase

return h; > Return the trained model
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for the context of single-target regression; however, here we only take a
single step rather than an iterative EM-like procedure. The mechanism is

summarized as pseudocode in Algorithm 1.

3.3.2 Mechanism 2: ensemble mode prediction

We train an ensemble of Regressor Chains, each with a random order.
Most of the previously developed ensemble methods (e.g. Random Forests
[Breiman, 2001] and Ensembles of Regressor Chains [Spyromitros-Xioufis
et al., 2016]) use mean averaging to obtain the final predictions. However,
we would like to fit our models on datasets with a multi-modal distribution
and have them identify a mode. Since in this setting, the mean does not
necessarily coincide with a mode, we develop an approach to search for
a mode of distribution. Therefore, instead of averaging, we first apply K-
means clustering [Lloyd, 1982] in order to identify modes, and then produce
the mean of the largest cluster as an estimate of the mode of the predictive

distributions.

An example with two modes is given in Fig. 3.3. An average of the bigger
cluster of predictions better corresponds to a ground-truth value than an
average of all predictions. We select 10 Regressor Chains in an ensemble as
a standard trade-off between the accuracy of prediction and computation

time [Spyromitros-Xioufis et al., 2016].

3.4 Experiments

3.4.1 Methods

Table 3.1 summarizes the methods used in the experiments; all of which

as implemented in Scikit-Learn [Pedregosa et al., 2011]. We experimented
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F1GURE 3.3: The mmERC method, mechanism 2: average of the largest
cluster (#1) gives a more precise prediction of y = {y1, y2} which is closer
to the true value.

TABLE 3.1: Regression methods compared in the experiments.

(Meta) Method Base estimator
DT Multi-output Decision Tree -
RF Multi-output Random Forest —
IR (dt) Independent Regressors Decision Tree
IR (rf) Independent Regressors Random Forest
IR (svr) Independent Regressors SVR
RC (dt) Regressor Chain Decision Tree
RC (rf) Regressor Chain Random Forest
RC (svr) Regressor Chain SVR
ERC (dt) Ensembles of Regressor Chains Decision Tree
ERC (rf) Ensembles of Regressor Chains Random Forest

ERC (svr Ensembles of Regressor Chains SVR

)
mmERC (dt)  Multi-Modal Ensembles of Regressor Chains Decision Tree
mmERC (rf)  Multi-Modal Ensembles of Regressor Chains Random Forest
mmERC (svr) Multi-Modal Ensembles of Regressor Chains SVR
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with different base estimators for multi-target methods (as indicated in the
table).

3.4.2 FEvaluation

We used two evaluation metrics: average Relative Root Mean Squared

Error (aRRMSE), which is common to use in multi-target regression,

1 & N (yii — D)2
aRRMSEZ\lZzl(y? Jij)

L= S (yig — 7;)? 7

(where y; is the mean value of the j-th target in the training data); and
UCF [Burger and Lucka, 2014] — an analog of the 0/1 Loss for regression
problems within given neighbourhood ¢ of the true values, see Eq. 3.1. For
the experiments, we take 6 = 1.0 for the targets scaled normally (with zero

mean and unit variance).

All the methods were evaluated using a 10-fold cross-validation with 90:10

training-test splits.

3.4.3 Datasets

We evaluated our algorithm on 40 synthetic datasets and one real-world

dataset.

We generated 40 = 8 - 5 synthetic datasets as pairwise combinations of
8 distributions for target variables y = {y1,v2}, and 5 distributions for
a feature variable x. Total number of instances varies from 200 to 600.
The clusters ¢ = 0 and ¢ = 1 are generated with Bernoulli distribution
¢ ~ B(0.5). The distributions of targets y are Gaussian mixtures form-

ing two clusters and presenting a variety of shapes, illustrated in Fig. 3.4.
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They vary in standard deviation, number of instances, shape, rotation, and

proximity to each other.

The feature variable x is designed to provide little information about the
targets and thus invoke high predictive uncertainty so that the dependencies
between the targets are even more useful for the model than the feature.
Different distributions of x reflect different degrees of uncertainty about
which cluster the model should choose for a particular sample, summarized
in Table 3.2. In the scenarios A and E, the feature z does not provide
information to which of two clusters y belongs. In the scenarios B, C, and
D, the feature x is generated taking the cluster of y into account. In each
generated synthetic dataset, one of 8 distributions of targets y and one of

5 distributions of feature x are combined.

A real-world dataset (432 instances) was taken from the R package agri-
colae [de Mendiburu and de Mendiburu, 2019] and refers to a native plant
of the Peruvian Andes called yacon (Smallanthus sonchifolius). The data
belongs to the International Potato Center in Lima (Peru). As targets,
we consider two multi-modally distributed features from the dataset: de-
grees briz (density or sugar concentration) and height of the plant. We
add feature x ~ AN(0,1) which again invokes a big amount of predictive

uncertainty. The distributions of the targets are demonstrated in Fig. 3.5.

3.5 Results and Discussion

An initial investigation indicates that mmERCs achieve generally the best
performance with a parameter value s = 0.5 in Algorithm 1, i.e. taking
half of the training dataset in the second training phase as demonstrated
in Fig. 3.6. The subsequent experiments in this chapter were conducted
with s = 0.5.
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FiGURE 3.5: Distributions of the targets height and brix in the yacon
dataset shown in (A) and (B) have both bi-modal structures. Samples of
the dataset shown in (C) form visibly separated clusters.



Multi-modal Ensembles of Regressor Chains

TABLE 3.2: Distributions of the feature x in generated synthetic datasets.

Group Distribution

A:  ~U(0,1) where U stands for uniform distribution

B 0ifc=0,
life=1

c. ~U(0,1)if c=0,
' ~U(1,2)ifc=1
N(0,1) if ¢ = 0,
N1, 1) ife=1

E:  ~N(0,1)

0.64

0.63
L
U 0.62
-

0.61

0.60

01 02 03 04 05 06 07 08 09 10
Value of the parameter s
FIGURE 3.6: Averaged UCF metric for the mmERC method, measured

across all synthetic datasets and grouped by the value of the s parameter
used in mechanism 1, s € (0, 1].
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The experimental results for the UCF metrics (Table 3.3) show that our
method, mmERC, on average outperforms the independent regressors as
well as standard Regressor Chains with a sequential cascade order. This
is already an important result not found in other Regressor Chains imple-
mentations. Moreover, our proposed mechanism to deal with multi-modal
distributions improves the performance of Ensembles of Regressor Chains
for all base estimators in most of the scenarios. These results are also
illustrated by the Friedman-Nemenyi diagram shown in Fig. 3.7a, where
the rank of the mmERC method is significantly better than for all other

tree-based methods.

As expected, the results under aRRMSE are less optimistic, see Table 3.4
and Friedman-Nemenyi diagram in Fig. 3.7b. However, in Fig. 3.8 we show
that mmERCs recognize clustered distributions better than ERCs both for
Decision Trees and Random Forests as base estimators. The same situation
is observed for the other datasets and other base estimators. We propose
the following explanation: MSE-based metrics penalize choosing the wrong
cluster more than putting estimations in-between of actual clusters since
the distance between prediction and the true value is bigger in the former
case. Thus, when a model recognizes a multi-modal distribution but fails to
choose the right cluster for some points, it can perform worse under MSE-
based metrics than models fitting to a single Gaussian distribution. We,
therefore, argue that this standard choice of the aRRMSE metrics may be
inappropriate in the case of multi-modal distributions and requires further

investigation.

In general, Decision Trees and D'T-based models successfully recognize clus-
tered distributions, but in the lack of informative features, they assign clus-
ters randomly. This can be seen in Random Forests (which are an average
of a number of random Decision Trees) results: all models, based on Ran-
dom Forests, put the predictions between the real clusters. Furthermore,

Decision Trees are formed as sets of decision boundaries and thus are not
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TABLE 3.3: UCF results for the synthetic datasets.

For simplicity of

presentation, the results are grouped and averaged by type of z feature
distribution as they reflect different degrees of uncertainty. This simpli-
fication does not affect the average values of metrics and average ranks.
The best value per group is in bold. The results are rounded to 2 decimal
points to display, so minor differences may be not seen in this representa-

tion.
Regressor A B C D E Average  AvgRank
DT 0.71 0.50 0.50 0.70 0.73 0.63+0.01 7.9
RF 0.84 047 045 0.78 0.84 0.67+£0.04 10.2
IR (dt) 0.79 050 052 0.74 0.78 0.66=+002  11.1
IR (rf) 0.86 047 047 0.79 087 0.6940.04 11.0
IR (svr) 0.72 0.40 0.52 0.70 0.72 0.61+0.02 6.0
RC (dt) 0.74 050 0.51 0.70 0.72 0.63+0.01 8.6
RC (rf) 0.81 045 045 0.75 0.82 0.66=+0.03 8.8
RC (svr) 0.70 0.40 0.51 0.67 0.71 0.60=£0.02 4.2
ERC (dt) 0.78 0.50 049 0.72 0.76 0.6540.02 8.6
ERC (rf) 0.83 044 0.44 0.76 0.83 0.6640.04 8.6
ERC (svr) 0.71 0.40 0.50 0.67 0.72 0.60=+0.02 5.0
mmERC (dt) 0.72 050 0.51 0.69 0.71 0.63+0.01 8.2
mmERC (rf) 0.69 0.43 0.44 0.63 0.67 0.57 +0.02 2.2
mmERC (svr) 0.69 0.40 0.52 0.67 0.68 0.59+0.02 4.6
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TABLE 3.4: aRRMSE results for the synthetic datasets. For simplicity
of presentation, the results are grouped and averaged by type of x feature
distribution as they reflect different degrees of uncertainty. This simpli-
fication does not affect the average values of metrics and average ranks.
The best value per group is in bold. The results are rounded to 2 decimal
points to display, so minor differences may be not seen in this representa-

tion.
Regressor A B C D E Average  AvgRank
DT 146 0.64 0.67 138 148 1.134+0.19 12.4
RF 1.17 0.55 0.55 1.11 1.17 0.91+£0.11 6.2
IR (dt) 147 0.64 0.69 1.38 1.47 1.13+£0.18 12.8
IR (rf) 1.17 0.55 055 1.11 1.17 0.91+£0.11 6.8
IR (svr) 1.10 046 0.60 1.02 1.10 0.86 4+ 0.09 2.8
RC (dt) 1.46 0.64 0.69 140 1.47 1.13+£0.18 12.6
RC (rf) 1.29 0.53 054 1.21 130 0.97+£0.16 7.4
RC (svr) 1.13 046 0.60 1.06 1.12 0.87+£0.10 3.6
ERC (dt) 1.35 0.63 0.64 1.28 1.36 1.05+0.14 10.0
ERC (rf) 1.17 0.51 0.52 1.09 1.17 0.90+£0.12 4.8
ERC (svr) 1.12 0.46 0.59 1.03 1.11 0.86=+0.10 2.6
mmERC (dt) 142 063 0.71 140 145 1.12+0.17 12.2
mmERC (rf)  1.20 049 0.53 1.11 1.20 0.91+0.13 5.8
mmERC (svr) 1.16 047 0.61 1.06 1.16 0.89+0.11 5.0
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smooth. Random Forests should be able to solve this issue, but, as we men-
tioned above, do not work well for recognizing multi-modal nature. Our
method, mmERC, improves the performance of Random Forests methods

and outputs a smooth function at the same time.

In the Yacon dataset, we observe the best predictive performance under
UCF for the mmERC models, see Table 3.5. Fig. 3.9a and 3.9b illustrate
the performance of the two models, mmERC (based on Random Forests)
and Decision Trees, respectively. Though graphically it seems that De-
cision Trees better mimic the distribution of the clusters, from the UCF
comparison we imply that they assign these clusters in a more random
way. Fig. 3.9c compares the precision of predictions of these two models
per sample. It shows that our method is more precise on some of the clus-
ters. Though we have not observed a significant advantage of our approach
on real-world datasets, we argue that it performs well on some datasets

with explicit multi-modality, particularly on some subsets of samples.

3.6 Conclusions and Future Work

In this work, we have developed a new method, Multi-Modal Ensembles
of Regressor Chains (mmERC), for multi-target regression. As opposed to
the conventional approaches assuming a uni-modal predictive distribution
approximating Gaussians, our approach is better able to capture the modes
of the distribution. The experimental study compares the performance of
the proposed method, independent regressors, standard Regressor Chains,
and Ensembles of Regressor Chains on 40 multi-modal synthetic and one

real-world datasets.

In empirical evaluation under the UCF metrics, mmERC achieves impor-
tant performance improvement across the multi-modal distributed datasets,
outperforming baseline and state-of-the-art methods. This is unlike the vast

majority of multi-target (and standard single-target) regression approaches
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FiGUrE 3.7: Friedman-Nemenyi diagrams comparing the ranking of the
experimentally tested methods. A lower rank is better, statistically indis-
tinguishable methods are connected by a horizontal line.
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TABLE 3.5: UCF results for the Yacon dataset.
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which target squared-error-based metrics. Our study hints that a choice of
UCF metric for measuring performance can be more adequate than using

standard errors and that this metric deserves further investigation.

In future work, we consider looking at additional evaluation schemas, such
as allowing multiple multi-output predictions (hypotheses) for a single in-
stance. This would allow a greater chance of capturing the true mode, even
when uncertainty is high. Furthermore, a more sophisticated structure of
the chains in the ensembles in order to better exploit dependencies between

the targets and achieve better predictive results.

Additionally, the proposed approach may be evaluated in the concept drift
machine learning tasks, where the relationships between inputs and outputs
in the underlying problem change over time, thus provoking multi-modality

of the target distribution as well as predictive uncertainty.






Chapter 4

Backward inference in

probabilistic Regressor Chains

As discussed earlier in this thesis, state-of-the-art approaches for multi-
target prediction, such as Regressor Chains, can exploit interdependencies
among the targets and model the outputs jointly. However, these models
are often too inflexible to answer queries under constraints such as when
targets jointly comprise a distribution and/or when certain target values
are fixed prior to inference and cannot be incorporated into the modeling of
the other targets. These limitations complicate the practical usage of such
models, particularly in applications where targets are highly dependent and
must be modeled as such. In this chapter, we present a solution to the afore-
mentioned problem as a backward inference algorithm for Regressor Chains
via Metropolis-Hastings sampling. We evaluate the proposed approach via
different metrics using both synthetic and real-world data. We show that it
is able to solve the issue with much lower error than marginal inference (i.e.

ignoring joint modeling). Furthermore, we show that the proposed method

99
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can provide useful insights into a real-world problem, namely in predicting

the distribution of potential natural vegetation.

4.1 Introduction

In Regressor Chains, increasingly used for multi-output prediction, predic-
tions are cascaded across the outputs. This means that the predictions of
the first labels in the chain are used as input features to model the rest of
the chain. Fig. 4.1a illustrates the standard setting of Regressor Chains for
3 targets. It has been well used in the context of multi-label classification
(as Classifier Chains, for binary outputs [Read et al., 2021]). There are
recent successes also in the multi-target regression context with continuous
outputs: for example, Regressor Stacking [Santana et al., 2017], Ensem-
bles of Regressor Chains [Spyromitros-Xioufis et al., 2016; Antonenko and
Read, 2022] (see also Chapter 3), and probabilistic frameworks [Read and
Martino, 2020]. A variety of applications can be targeted with such meth-
ods [Poonawala-Lohani et al., 2021].

However, the above-cited works make a number of standard assumptions:
all outputs are to be predicted, each can be predicted individually, and
those models can be retrained at will and with relative ease. We consider
a new setting that breaks these assumptions, by imposing the following

constraints:

1. Any output may be imputed/fixed prior to prediction;
2. Base regression models cannot be retrained;
3. Outputs satisfy a joint constraint.

We aim at inferring a joint posterior distribution over labels, i.e. proba-

bilistic Regressor Chains, under these constraints.
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FIGURE 4.1: Illustration of a Regressor Chain (depicted as a Bayesian
network, where shaded nodes indicate fixed observations) for inputs
x = {x1,22} and outputs y = {y1,y2,y3}. (A) demonstrates the standard
setting where forward inference is possible; (B) demonstrates challenges we
address: how to propagate imputed label information (label y3) ‘backward’
while maintaining a joint constraint and without training a new structure.
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While training a model with the constrained targets included in the fea-
tures set (i.e. ignoring constraint 2.) may be considered a simpler solution,
we argue that training a new model may not always be easily accessible.
Oppositely, we want to extract as much information as possible from the
model obtained earlier, trained on provided sets of features and targets.
This can be the case, for example, if due to ethical concerns, the data is
not accessible after training the model or computational resources are lim-
ited. Nowadays, more and more datasets are restricted, and, for example,
in federated learning, it is typical to transmit the model while keeping the
data characteristics hidden. This is similar to transfer learning when a pre-
trained model is used for a new task to avoid excessive training or model

tuning.

This problem may be also reformulated as a missing value problem but
with missing labels in the output space. However, we do not discuss here
standard missing value imputation methods as these would not satisfy con-
straint 2., using the previously trained model which predicts the outputs y

from the inputs .

In this work, we consider the following motivating example of a problem
satisfying the constraints 1.-3. We solve a problem of estimation of the
hypothetical vegetation and land-cover types based on climatic conditions
supposing that no urban activity was present while only data with urban
activity observed is available for the model training. In this setting, we must
fix the proportion of urban to 0 (constraint 1.) in order to query the model
on what types would be present under such conditions. Further, we suppose
that models cannot be retrained (constraint 2.) since, for example, access
to human expertise and/or to the training data used to build the model has
expired, or there is insufficient time or computational resources to retrain
and re-test models (e.g. re-validate for robustness, etc.). Additionally, since

this is an example of compositional data, the outputs comprise a categorical
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distribution, and thus their value, for any given input, must sum to 1 (i.e.

constraint 3.).

We remind the reader that y = [yi,...,yr] represents the L target com-
ponents of the data. As a categorical distribution (i.e. outputs represent
compositional data) it should be that Zlel y; = 1, and 3 > 0. Our goal is

to answer queries of the form

p(y-r |z, yr), (4.1)

where F' C {1,...,L} is a set of fixed/observed outputs, and —F =
{1,...,L} \ F are the remaining outputs to predict; e.g. y-r = [y1,¥2]
and yp = [ys] in Fig. 4.1b.

A Regressor Chain ‘H = [hq, ..., hy] involves a model (regressor) h; for each

of the outputs v, ..., yr providing prediction
g = hi(z,y1,- ., y1-1)
which is, typically, a function of probability density function (pdf)
Pyl v, Y1), (4.2)
e.g. the expected value
i = Eyp(ys | o,y il

This allows us to provide a prediction for all outputs,

g = [:gl? s 7:&[/] = [hl(w)7h2($7g1)7 .. .,hL(ﬂZ,gl, s 7@[/*1)]'

Recall that each prediction becomes a feature for the following model in the
‘chain’. By this mechanism, Regressor Chains (as well as Classifier Chains,

e.g. [Read et al., 2011]) aim to model the outputs together, or jointly.
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At the same time, independent models will inherently make an assumption
of independence as they model each g, = h)(x) separately, and thus the
joint constraint is not satisfied, so independent models are not applicable

in the given setting.

If the pdf is explicitly modeled (which is the case of Probabilistic Regressor
Chains [Read and Martino, 2020]), Regressor Chains also provide the joint

posterior distribution:

L
ylw :H yl|m7y17”'7yl—1)- (43)

Returning to the example model pictured in Fig. 4.1, the corresponding
joint distribution is given by p(y |®) = p(y1 [ 2) - p(y2 | &, y1)-p(ys | 2, y1, y2).
However, here we face the challenge posed by the interaction of constraints
1. (fixed output) and 3. (joint constraint): if y3 is a fixed observation,
forward inference along the chain cannot be completed while respecting the
other constraints; specifically the term p(ys|x,y1,y2). A naive approach
of simply predicting ; and g and then normalizing them to meet the
constraint % | 9, = 1 is not valid, because it answers the query p(y-r | z)

but not the target query p(y-r |, yr).

We propose a method, Metropolis-Hastings sampled Regressor Chains
(mhsERC), which is able to provide a solution to the aforementioned prob-
lem by combining Regressor Chains and Metropolis-Hastings sampling for
backward inference in the prediction step. We apply our approach, mh-
sERC, on synthetic and real-world datasets and find that:

o In the case of synthetic data, the resulting distribution provided by
mhsERC is very close to the ground-truth, for a given imputation.
The model naturally provides a distribution for each instance in ad-

dition to a predicted mean value;



Backward inference in probabilistic Regressor Chains 65

o In three multi-target regression datasets, we provide values for one
target explicitly and compare predictions of the other targets. We
conclude that mhsERC successfully infers missing targets, given other
targets held fixed as observations, and reaches significantly better per-

formance than the baseline methods;

o In the real-world climate and land-cover data, we were able to extract
insights regarding the potential distribution of vegetation, after fixing

the percentage of urban cover to zero.

The rest of the chapter is organized as follows. After summarizing the
background and related work in Section 4.2, we present our approach in
Section 4.3. Data and evaluation metrics are presented in Section 4.4.
After presenting the results and their discussion in Section 4.5, we draw

conclusions in Section 4.6.

4.2 Related work

Although there exist a variety of methods for multi-target regression (for ex-
ample, Predictive Clustering Trees [Blockeel et al., 2000], Regressor Chains
and Ensembles of Regressor Chains [Spyromitros-Xioufis et al., 2016], Re-
gressor Stacking [Santana et al., 2017], etc.), these approaches are typically
used in a standard predictive setting and do not directly target joint pre-
diction of targets when some of the output values are provided before the

prediction.

In [Read and Martino, 2020], Regressor Chains were further developed into
a probabilistic framework, however only ancestral, or forward, inference
along the chain is available which does not respond to the set constraints
1.-3. Also, the authors did not propose how to use non-probabilistic base

classifiers such as Decision Trees.
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The given problem (recall example in Fig. 4.1b) can be represented as a
Bayesian Network, specifically a Hybrid Bayesian Network [Salmerén et al.,
2018] which can handle continuous variables during inference as opposed to
classic Bayesian Networks. However, learning the structure of a Bayesian
Network is extremely costly and inference options are limited, normally cor-
responding to linear-Gaussian models or approximate methodologies based

on sampling, and variational inference.

The problem setting involving the distributional constraint, with missing
value, has been called ‘structurally incomplete’ by [Beigaité et al., 2022];
but authors here use a neural network approach that can be built arbi-
trarily. Oppositely, we develop a probabilistic inference approach under
Regressor Chains. The general setting for predicting a composition of out-
puts is known in the statistics literature as ‘compositional data analysis’
[Aitchison, 2005].

As an example of a real-world problem involving constraints 1.-3, we con-
sider the prediction of potential vegetation distribution in the absence of
urban activity. A similar setting was considered in [Beigaité et al., 2022].
In our work, we also face the issue of the evaluation of ground-truth distri-
bution for comparison, since the goal is to explore alternative hypotheses.
Our solution is to study the probabilistic challenge of deriving a joint dis-
tribution directly; whereas the authors of [Beigaité et al., 2022] focus on the
accuracy of predicting dominant vegetation types. Another important dif-
ference is that we consider the additional constraint of tackling the problem

at inference time, rather than selecting different training regimes.

In ecology and biogeography, a related research question concerns the in-
ference of potential natural vegetation; the anticipated state of mature
vegetation under specific environmental conditions, without any human in-
tervention [Chiarucci et al., 2010]. In recent years, statistical and machine-
learning techniques have gained popularity for their application in con-

structing such models [Hemsing and Bryn, 2012; Hengl et al., 2018; Raja
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et al., 2018] but, in these works, the focus is on exploring the relationship
from climatic input observations to the targets, rather than the probabilis-

tic relationship among the targets, as we do.

4.3 Owur method: Metropolis-Hasting sam-
pled Regressor Chains

As mentioned in Section 4.1, we target inferring the probability defined by
Eq. (4.1). In other words, we want to evaluate the probability

7(9) = p(Y-r | Yr, )

for any particular g and &, where gp are fixed and g—p may vary. By the

definition of condition probability,

-1, "'7@17:'%)

N p(@FuﬂF,ifJ) . Hlep(
(9) = = -
F, (B)

i |
p(Yr, &) p(
X H1L:1p@l ‘

S

I—15 -+ Y1, m)v

<>

The first important question is how to evaluate probabilities in the right-
hand side of the last expression, p(9;|9i-1, ..., 91, &). For this goal, we
assume that for each base estimator h;, the corresponding distribution may
be presented as a normal distribution, and it is possible to obtain its pa-
rameters, the mean p and standard deviation o (see Algorithm 2). These

parameters may be inferred, for example,

— directly from the model for Bayesian regression models;

— by bootstrap [Abdar et al., 2021] (non-probabilistic, but ensembled

base models, like Random Forest) with an empirical distribution;

— by Monte Carlo Dropout [Abdar et al., 2021];
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— by perturbation of input (shallow Monte Carlo Dropout).

In our work, we use Random Forests and calculate the mean and the stan-

dard deviation for the predictions of individual trees from the ensemble.

Another important issue is that while we assume that we are able to eval-
uate this probability for any point g, we need an explicit method for
sampling from this distribution for modeling it. Here we propose to use
the Metropolis-Hastings (MH) sampling [Metropolis et al., 1953; Hastings,
1970] as a simple standard sampling method, though other sampling ap-
proaches may be applied. In the MH algorithm (summarized as pseudocode
in Algorithm 3), a random walk {y[ﬂ}t:omT, each iteration proposes a new
estimate 3y by adding random normal noise to the previous estimate y*.
The new estimate y’ is evaluated by the distribution probability function
7(y') and transition function ¢(y, y') and accepted as a new step yl*1 if

a randomly generated r ~ U(0, 1) is smaller than the acceptance ratio

m(y') - gy, o) ) |

e (1’ m(y) - q(y', 1)

In the scope of this work, we assume that the transition function ¢ may be

considered symmetrical and thus may be eliminated from the last formula.

To summarize our approach, we generate a targeted distribution for each

instance by following these steps:

1. An initial first point of a random walk y!% is selected randomly (e.g.

equal to 0);

2. On each iteration, a new estimate y’ is proposed by adding random
noise to the previous step yl! and fixing Yy to the corresponding
values;

o

- 09| 9i-1, ..., 91, &), each probability in the product is calculated

3. Acceptance ratio a = min (1, ) is calculated, where m(g) =
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as pdf of the normal distribution obtained from base estimators of the

Regressor Chain;

[t+1]

4. The proposed estimate 3y’ is accepted as y if a randomly gener-

ated r ~ U(0,1) is smaller than the acceptance ratio «; otherwise,
Yl = ]

)

5. The steps 2.-4. are repeated T' times.

Note that the proposed method, Metropolis-Hastings sampled Regressor
Chains (mhsRC), is not specific to any particular chain order and can be
applied to a Regressor Chain of any order with any set of fixed outputs. If
an Ensemble of Regressor Chains was given as a prior trained model, then
we can perform the procedure with all individual chains in the ensemble and
then average the predictions. We will further call this approach Metropolis-
Hastings sampled Ensembles Regressor Chains (mhsERC).

4.4 Experiments

We remind the reader that our goal is to estimate Eq. (4.1). To evaluate
possible solutions of this problem, we perform the following experiments.
First, we generate synthetic data where all distributions (joint, marginals),
including Eq. (4.1), are fully known; therefore we compare the distributions
directly. Then, we perform experiments on real-world data where we take
values of fixed targets yp directly from data and evaluate predictions for
the other targets y—p. Finally, we use real-world data and expert intuition
to make conclusions with regard to Eq. (4.1), given hypothetical (that is,

not from the data) values of yp.
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Algorithm 2 Evaluate the probability of the proposed estimate
1: procedure m(proposed estimate y’)
2 for [in1,..,L do
3: i, 0 < mean and std of hy(Z, 91, ..., 91-1)
4 pu < pdf (y;) for N'(p, o)
Algorithm 3 Metropolis-Hastings sampled Regressor Chains
1: procedure MHSRC(T iterations)
2 yl 0 > First step of random walk
3 for 0 <t <T do
4 y' <+ yll + N(0,0,,) > Propose new 3/’
5: > (opr = 0.01 for normalized data)
6 a = min (1, &g;%) > Calculate acceptance ratio
7 r~U(0,1) > Sample random number from [0, 1)
8 if r < a then
9: y[tH] +— v > Accept proposed point
10: else

11: Yl 4l > Refuse proposed, keep previous
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4.4.1 Data

Synthetic dataset

In this work, we present a synthetic dataset with one feature x and tar-
gets y = {y1,92,y3}, where yp = {ys} and the ground-truth distribution
p(y-F | yp, x) is known. Dependencies between the parameters and vari-
ables are illustrated by a Bayesian diagram in Fig. 4.2. We first sample three
target variables of interest, yzf’zo ~ Q, y%‘"’zo ~ 1 —qa, and y3 = 0, where
is a bi-modal mixture of normal distributions, see Fig. 4.3a, and ¥,y are
normalized afterwards so that 0 < y¥*=°,y%=% < 1 and ¥~ + ¥~ = 1.

This gives us P(y; |ys = 0) and P(y2|y3 = 0).

After that, the joint distribution is generated: for each instance,

=0
n=y"" - (1-p),

3=0
=y - (1—q),

y3=0 y3=0
J .

ys=y1- Pty q,

where p ~ N(0.1,0.1) and ¢ ~ N(0.5,0.2), respectively (taking the abso-
lute value if negative is generated). This significantly shifts the distribution
of the ¥y, variable when compared to y§3:0, see Fig. 4.3b. The x feature is
generated by adding noise to the parameter o and further linear transfor-

mation: z = —20- (a4 ¢) + 10, € ~ N(0,0.1).

This synthetic dataset may be illustrated by a vegetation distribution ex-
ample, where y1, y2, and y3 variables correspond to snow, grass, and urban,
respectively; each instance presents a tile on the earth’s surface. As ur-
ban activity is more likely to be settled in grass type, snow and grass are
not equally affected by the presence of humans. In this setting, we ob-

serve y; and yy in the presence of urban and are interested in evaluating
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FIGURE 4.2: A diagram representing the generation of synthetic data.

Grey nodes correspond to parameters with known distributions, and white

nodes correspond to generated variables. While variables x, y1, y2, and ys

are given for model training, the goal is to query y¥*=° and y¥*=° (high-
lighted with a dashed line).
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FIGURE 4.3: Synthetic dataset.
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P(y1 |ys = 0) and P(y2 | y3 = 0), i.e. vegetation distribution in the absence

of urban.

Real-world benchmark data

Subsequently, we use three real-world multi-target regression datasets.
A compositional Arctic lake dataset [Aitchison, 2005] describes the dis-
tribution of sand, clay, and silt (3 targets) in 39 water samples, on different
depths (1 feature). The Concrete Slump dataset [Yeh, 2007] has three
targets that describe three properties of concrete (slump, flow, and com-
pressive strength) and seven features presenting concrete ingredients in 103
samples. The Energy Building dataset (Enb) [Tsanas and Xifara, 2012
has two targets, heating load and cooling load requirements of buildings
(i.e. energy efficiency), and eight features presenting building parameters

for 768 instances.

For evaluation on all three datasets, we split the data into train and test
subsets (80:20, 5-fold cross-validation), and in the prediction phase provide
explicitly the values of the first target yr = [y1]. The metrics are calculated
for the predicted targets y—r = [yo, ... ].

Vegetation data

Finally, we apply our method to a dataset describing the distribution of land
cover globally to infer a possible vegetation distribution in the absence of
urban activity (i.e. force the corresponding classes to 0 explicitly). The set
of land cover classes we aim at predicting is derived from the Moderate Res-
olution Imaging Spectroradiometer MCD12Q)1 dataset [Friedl et al., 2019]
for the year 2018 and represents land cover as defined by the International

Geosphere-Biosphere Programme cover classification scheme [Loveland and
Belward, 1997].
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FIGURE 4.4: The predominant land cover class per global grid cell. In our
prediction problem, each cell is represented by a categorical distribution
over all types; only the maximum type within each cell is mapped.
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We use 19 bioclimatic variables as predictive features, derived from the
WorldClim database v2.0 [Fick and Hijmans, 2017]; these 19 variables
represent ecologically relevant means, minima, and maxima in temper-
ature and precipitation, averaged for the period 1970-2000. Both land
cover targets and bioclimatic features were obtained from the Eco-ISEA3H
database [Mechenich and Zliobaité, 2023], a compilation of publicly-available
Earth observation (EO) datasets characterizing global climate and biogeog-

raphy.

The database is built on a geodesic discrete global grid system [Sahr et al.,
2003], a systematic spatial framework of equal-area hexagonal cells. We
used resolution 3H09, in which cells measure approximately 2600 km?, and
retained only terrestrial cells in our analysis (56,821 instances or approxi-
mately 28% of total cells globally). The proportions of each grid cell covered
by each of the 16 land cover classes (summing to 1.0) serve as model output.
The predominant cover class within each grid cell is mapped in Fig. 4.4; the

16 terrestrial classes (as well as water cover) are listed in the map legend.

We are interested in inferring the fractional distribution of natural land
cover classes in the absence of three human-modified cover classes, namely
croplands, urban and built-up lands, and cropland /natural vegetation mo-

saics (mapped together in red in Fig. 4.4).

4.4.2 Evaluation

In the synthetic dataset both ground-truth distributions P(y; |ys = 0)
and P(ys |ys = 0) and observed distributions P(y1), P(y2), and P(ys3) are
known. The task of a model is to reconstruct the ground-truth distribution
from the observed distribution and measure the distance between them. In
the multi-target regression datasets, we provide values for the first target

explicitly and evaluate the prediction of the other targets.
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While the proposed algorithms, mhsRC and mhsERC, naturally provide a
distribution per instance, we will use the means of these distributions to

compare these approaches with the baselines.

As evaluation metrics, we use Mean Squared Error (MSE), Uniform Cost
Function (UCF), and Wasserstein Distance (WD). Mean Squared Error cal-
culates averaged squared loss, and, for the ground-truth {y;} and predicted

{9:},i=1,...,N,

(yi — 9:)°

™=

1
MSE = —
Nil

Uniform Cost Function [Burger and Lucka, 2014] may be considered as an
analog of the 0/1 Loss for regression problems within a given neighborhood
0 of the true values:

1 X |0f [y — gill2 < 5,

UCF(5) =Y e = gelle < 5

Ni= |1 otherwise,
where 0 is an adjustable parameter. For the experiments, we take
0 = 0.5. Wasserstein distance is a distance function defined between prob-
ability distributions and may be seen as the minimum amount of “work”

required to transform one distribution to another,
+oo L
WD:/ v -],
—00

where Y and Y are cumulative distribution functions for the vectors 4 and

y, respectively.

We compare the proposed inference method built on Regressor Chains with
Random Forests as base estimators to several baselines. First, we compare
to a Regressor Chain with direct order [y, ...,yr], when the target with
fixed values (1) comes first in the chain, and thus it is possible to cascade
the fixed values directly, without backward inference. Second, we evaluate

several marginal models that don’t take the joint constraint into account:
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— The fixed targets are set to corresponding values, other targets are
re-normalized, no trained model is used (redistrib.) — applicable only

for the synthetic dataset;
— Ensembles of Regressor Chains (ERC);
— Multi-target Random Forests (mtRF);

— Individual single-target Random Forests (stRF);

where we plug in the fixed values after prediction and re-normalize the

targets so that their sum is equal to one.

The proposed methods, mhsRC and mhsERC, are run with 7" = 1000

iterations.

4.5 Results and discussion

Synthetic data

Table 4.1 shows the comparison of different methods for the synthetic data,
where a model should ‘uncover’ the ground-truth distribution without ur-
ban activity. First, to support the choice of Regressor Chains for a pre-
dictive task, we evaluate performance of all methods in a standard setting
when prediction from x to y = {y1,y2,y3} is required. To this end, we
perform 5-fold cross-validation and observe that Regressor Chains and En-
sembles of Regressor Chains outperform single- and multi-target Random

Forests.

Second, we compare empirically the predictions of ¢, o when y3 = 0 by the
models listed above and ground-truth yi, yo when y3 = 0. We observe that
the metrics values differ significantly for different chain orders and a chain

[3,1,2] shows the best result: this is unsurprising as we plug in directly
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FIGURE 4.5: (A) Re-discovering of ground truth P(ys|ys = 0) distribu-

tion in synthetic data. Note, that y; |ys = 0is equal to 1 —y2|y3 = 0 (by
nature of compositional data) so technically we are evaluating distribu-
tions of both targets. (B-E) Predicted per-instance distributions for four

individual instances.
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the constraint to the first model of the chain and further propagate its
inference. For some of the orders ([2,1,3], [2,3,1]) the task is more difficult.

However, Metropolis-Hastings sampled Ensemble of Regressor Chains (mh-
sERC) containing all possible 6 chain orders shows high-performing results
when compared to ‘naive’ models without joint inference. Fig. 4.5a also
demonstrates graphically the resulting distributions. The inference of the
mhsERC model is very close to the original bi-modal symmetric distribu-
tion of grass and snow. Examples of individual per-instance distributions
of J2|ys = 0 (for given x) are presented in Fig. 4.5b—4.5e. Again, we see
that the predicted distributions tend to center around the desired value of

ground-truth y, | y3 = 0.

Multi-target datasets with one target provided explicitly

For three multi-target regression datasets, Arctic Lake [Aitchison, 2005],
Slump [Yeh, 2007], and Enb [Tsanas and Xifara, 2012], the values of the
target y; are provided explicitly, and other targets are to be predicted. The
experiments are performed in a 5-fold cross-validation setting: models are
trained on 80 percent of the data, and for 20 percent of the data values of

the target y; are provided in the prediction phase.

Table 4.2 shows the comparison of the newly proposed method, mhsERC,
Regressor Chain with direct order [y, ...,yz] (when fixed values of y; are
simply propagated via chain), and three marginal methods (ERC, mtRF,
stRF). We observe that mhsERC obtains significantly better results than
the marginal methods and close to the ones of Regressor Chains with direct
orders with regard to all three metrics. The statistical significance is illus-
trated by the Friedman-Nemenyi diagrams in Fig. 4.6 for all three metrics,
the mhsERC method ranked along with Regressor Chains with direct order
and significantly higher than other methods.
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TABLE 4.1: Synthetic data. First, results for classic cross-validated re-
gression (x — y) are provided to compare the performance of all models
in a standard setting. Then, the models are evaluated for prediction with
y3 = 0 vs. ground truth y,ys | y3 = 0; a smaller value is better. Regressor
Chains without backward inference [RC] with y3 as a first target in a chain
are used as benchmarks. Best value in bold, second best value underlined.
Orders of Regressor Chains (permutations of 1,2,3) are given in square

brackets.
T —y x— y,y2|ys =0
Model MSE MSE WD UCF
mhsRC [1,2,3 0.016 0.019 0.052 0.099
mhsRC [1,3,2 0.015 0.011 0.038 0.073
mhsRC (2,1,3 0.017 0.169 0.132 0.281

[1,2,3]
ot
mhsRC [2,3,1]  0.017  0.029 0.114 0.272
[3,1,2]
[3,2,1]

mhsRC [3,1,2]  0.017  0.007 0.016 0.054
mhsRC [3,2,1]  0.017  0.011 0.039 0.085
mhsERC 0.015 0.010 0.027 0.037
stRF 0.018  0.018 0.115 0.172
mtRF 0.018  0.019 0.115 0.176
ERC 0.016  0.016 0.108 0.117
redistrib. - 0.024 0.122 0.213
RC [3,1,2] 0.017  0.009 0.038 0.053
RC [3,2,1] 0.017  0.009 0.036 0.055

TABLE 4.2: Multi-target regression data, predictions when the first target
is provided explicitly; smaller value is better. Best value in bold, second
best value underlined.

Arctic Lake Slump Enb
Model MSE WD UCF MSE WD UCF MSE WD UCF

mhsERC  0.002 0.030 0.000 0.177 0.205 0.806 0.016 0.065 0.152
RC direct 0.002 0.029 0.000 0.173 0.188 0.825 0.015 0.068 0.132
mtRF 0.008 0.039 0.150  0.373 0.446 0.951  0.025 0.063 0.187
stRF 0.008 0.041 0.150  0.322 0.415 0.951  0.020 0.069 0.174
ERC 0.008 0.036 0.125  0.333 0.408 0.971  0.027 0.069 0.193
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FIGURE 4.6: Friedman-Nemenyi diagrams comparing the ranking of the
experimentally tested methods for multi-target regression data, predic-
tions when the first target is provided explicitly. A lower rank is better,
statistically indistinguishable methods are connected by a horizontal line.
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Vegetation data

Prediction of vegetation from climate.

First, we point out that Ensemble of Regressor Chains is a well-performing
model for the prediction of vegetation types from climate. Land areas
worldwide are highly imbalanced in terms of dominant land cover types
and their mixtures. For example, deciduous needleleaf forest, the least
represented of the 16 land cover types, is dominant over less than 0.0005%
of the globe, whereas grassland is the most common, being the dominant
land cover type on more than 20% of the planet’s tiles; i.e. cells dominated

by these two types of land cover have errors which vary up to 1000%.

A standardized squared error metric would encourage the model to ignore
the former since the squared error would be relatively minuscule. We thus
choose Mean Absolute Error (MAE) as a metric to prevent the model from
ignoring minority cover types and not penalize the model too hard for
making non-zero estimates on minority cover types. The experiments are
done under 10-fold cross-validation, and splits are designed to account for
spatial correlations between neighboring grid cells and avoid information
leakage between train and test partitions. The evaluation under MAE is
shown in Table 4.3.

While single- and multi-target Random Forests show the best performance
in cross-validation experiments with regard to MAE, we are not aware
if it is possible to force these models to modify particular targets in the
prediction phase. Ensembles of Regressor Chains run only slightly worse,
and we propose a natural mechanism to impute particular targets with
particular values for any chain in the ensemble, while other targets take

this value into account.

No urban activity. We set the values of three variables (croplands, ur-

ban and built-up, cropland/natural vegetation mosaic) to zero and apply
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TABLE 4.3: 10-fold cross-validation, comparing different multi-label mod-
els for vegetation prediction. Best value in bold.

Model MAE std
stRF 0.047 5.07e-05
mtRF 0.045 4.55e-05

RC (with RFs)  0.061  6.12e-05
ERC (with RFs)  0.050 4.87e-05

the newly designed method, mhsERC. Fig. 4.7 demonstrates the predicted
vegetation distribution in the absence of human activity for two densely
populated large areas, Europe and South Asia, as well as for four selected
small areas within these two. Subjectively, the results appear visually plau-
sible. There are no noticeable anomalies. This adds support to our claim
that our method can be used flexibly for real-world tasks. Although, in-
herently, there can be no ground-truth evaluation for such a task, we can
take confidence in the relatively high performance on the synthetic and

non-hypothetical real-world tasks investigated earlier.

4.6 Conclusion

In this chapter, we introduce a particular challenge in the multi-output
setting: some targets come observed in the inference phase, and the option
to re-train models is not available, yet the outputs must be nevertheless
provided under a joint constraint. We study this setting in the context
of Regressor Chains and adapt them to the given scenario by employing
Metropolis-Hastings backward inference hereby enabling to leverage pre-
trained models without re-training under different chain orders. Naturally,
the proposed method provides an empirical distribution for each prediction

instead of a single expected value.
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FIGURE 4.7: Plots 4.7a and 4.7d show the prevalent vegetation type
per global grid cell when human activity is present (left) and when it is
hypothetically absent (right; where we fixed urban to 0 and re-predicted).
Plots 4.7b, 4.7c, 4.7e, and 4.7f show vegetation distribution per grid cell,
with (observed) and without (predicted) human activity.
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We show that the result can be adapted and evaluated in several use cases.
It performed out-competitively on synthetic data (with controlled ground
truth) as well as in a real-world challenge of predicting potential vegetation
in the absence of human activity. We conclude that the proposed method
successfully solves the task, allowing flexibility and applicability of Re-
gressor Chains algorithms beyond their predictive performance in standard

multi-target regression settings.



Chapter 5

Missing value imputation as a
multi-label task

Missing values are a common problem in data science and machine learning.
Removing instances with missing values is a straightforward workaround,
but this can significantly hinder subsequent data analysis, particularly when
features outnumber instances (p > N). There are a variety of methodolo-
gies proposed in the literature for imputing missing values, most of them
proceeding iteratively in a coordinate-ascent scheme. Denoising Autoen-
coders, for example, have been leveraged efficiently for imputation. But
neural-network approaches have been relatively less effective on smaller
training sets. To this end, we propose Autoreplicative Random Forests
(ARF) via a multi-output learning approach, which we introduce in the
context of a framework that may impute via either an iterative or proce-
dural process. Experiments on several low- and high-dimensional datasets
show that ARF exhibits better imputation performance than its competi-
tors. We also propose ARF in a probabilistic framework, where the confi-

dence values are provided over different imputation hypotheses, therefore

87
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maximizing the utility of such a framework in a machine-learning pipeline

targeting predictive performance.

5.1 Introduction

Missing values are a common problem and an important issue in the do-
main of data science and machine learning. Most off-the-shelf statistical
and machine learning methods cannot learn from data containing missing
values, and such values must be imputed, or entire instances removed, prior
to analysis. When many values are missing, considering only instances with
complete information (no missing values) can lead to a significant loss of

information or even an empty dataset.

Indeed, a special challenge is when missing values occur in many or most
training samples. This is more likely to occur when there are sufficiently
more features (p) than samples (IV), i.e. when p > N, which means that re-
moving samples amplifies the imbalance. Examples of this scenario include
medical and bioinformatics arrays, classification problems in astronomy,
tool development for finance data, and weather prediction [Johnstone and
Titterington, 2009].

Denoising Autoencoders (DAE) is a state-of-the-art method for m